Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,121 +1,246 @@
|
|
|
|
|
| 1 |
import os
|
| 2 |
-
|
| 3 |
-
from PIL import Image
|
| 4 |
-
import requests
|
| 5 |
import torch
|
| 6 |
-
from
|
| 7 |
import gradio as gr
|
| 8 |
-
from
|
| 9 |
-
import
|
| 10 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
|
|
|
| 16 |
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
ckpt,
|
| 21 |
torch_dtype=torch.bfloat16,
|
| 22 |
-
|
| 23 |
-
)
|
| 24 |
-
|
| 25 |
-
processor = AutoProcessor.from_pretrained(
|
| 26 |
-
ckpt,
|
| 27 |
-
token=hf_token # ํ ํฐ ์ถ๊ฐ
|
| 28 |
-
)
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
@spaces.GPU
|
| 33 |
-
def bot_streaming(message, history, max_new_tokens=250):
|
| 34 |
-
|
| 35 |
-
txt = message["text"]
|
| 36 |
-
ext_buffer = f"{txt}"
|
| 37 |
-
|
| 38 |
-
messages= []
|
| 39 |
-
images = []
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
for i, msg in enumerate(history):
|
| 43 |
-
if isinstance(msg[0], tuple):
|
| 44 |
-
messages.append({"role": "user", "content": [{"type": "text", "text": history[i+1][0]}, {"type": "image"}]})
|
| 45 |
-
messages.append({"role": "assistant", "content": [{"type": "text", "text": history[i+1][1]}]})
|
| 46 |
-
images.append(Image.open(msg[0][0]).convert("RGB"))
|
| 47 |
-
elif isinstance(history[i-1], tuple) and isinstance(msg[0], str):
|
| 48 |
-
# messages are already handled
|
| 49 |
-
pass
|
| 50 |
-
elif isinstance(history[i-1][0], str) and isinstance(msg[0], str): # text only turn
|
| 51 |
-
messages.append({"role": "user", "content": [{"type": "text", "text": msg[0]}]})
|
| 52 |
-
messages.append({"role": "assistant", "content": [{"type": "text", "text": msg[1]}]})
|
| 53 |
-
|
| 54 |
-
# add current message
|
| 55 |
-
if len(message["files"]) == 1:
|
| 56 |
-
|
| 57 |
-
if isinstance(message["files"][0], str): # examples
|
| 58 |
-
image = Image.open(message["files"][0]).convert("RGB")
|
| 59 |
-
else: # regular input
|
| 60 |
-
image = Image.open(message["files"][0]["path"]).convert("RGB")
|
| 61 |
-
images.append(image)
|
| 62 |
-
messages.append({"role": "user", "content": [{"type": "text", "text": txt}, {"type": "image"}]})
|
| 63 |
-
else:
|
| 64 |
-
messages.append({"role": "user", "content": [{"type": "text", "text": txt}]})
|
| 65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
-
if images == []:
|
| 70 |
-
inputs = processor(text=texts, return_tensors="pt").to("cuda")
|
| 71 |
-
else:
|
| 72 |
-
inputs = processor(text=texts, images=images, return_tensors="pt").to("cuda")
|
| 73 |
-
streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True)
|
| 74 |
-
|
| 75 |
-
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
|
| 76 |
-
generated_text = ""
|
| 77 |
-
|
| 78 |
-
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 79 |
-
thread.start()
|
| 80 |
buffer = ""
|
| 81 |
-
|
| 82 |
for new_text in streamer:
|
| 83 |
buffer += new_text
|
| 84 |
-
generated_text_without_prompt = buffer
|
| 85 |
-
time.sleep(0.01)
|
| 86 |
yield buffer
|
| 87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
css = """
|
| 89 |
footer {
|
| 90 |
visibility: hidden;
|
| 91 |
}
|
| 92 |
"""
|
| 93 |
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import spaces
|
| 2 |
import os
|
| 3 |
+
import time
|
|
|
|
|
|
|
| 4 |
import torch
|
| 5 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig, AutoProcessor
|
| 6 |
import gradio as gr
|
| 7 |
+
from threading import Thread
|
| 8 |
+
from PIL import Image
|
| 9 |
+
import subprocess
|
| 10 |
+
|
| 11 |
+
# Install flash-attn if not already installed
|
| 12 |
+
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
| 13 |
+
|
| 14 |
+
# Model and tokenizer for the chatbot
|
| 15 |
+
MODEL_ID1 = "microsoft/Phi-3.5-mini-instruct"
|
| 16 |
+
MODEL_LIST1 = ["microsoft/Phi-3.5-mini-instruct"]
|
| 17 |
+
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
| 18 |
+
|
| 19 |
+
device = "cuda" if torch.cuda.is_available() else "cpu" # for GPU usage or "cpu" for CPU usage / But you need GPU :)
|
| 20 |
|
| 21 |
+
quantization_config = BitsAndBytesConfig(
|
| 22 |
+
load_in_4bit=True,
|
| 23 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
| 24 |
+
bnb_4bit_use_double_quant=True,
|
| 25 |
+
bnb_4bit_quant_type="nf4")
|
| 26 |
|
| 27 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID1)
|
| 28 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 29 |
+
MODEL_ID1,
|
|
|
|
| 30 |
torch_dtype=torch.bfloat16,
|
| 31 |
+
device_map="auto",
|
| 32 |
+
quantization_config=quantization_config)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
+
# Chatbot tab function
|
| 35 |
+
@spaces.GPU()
|
| 36 |
+
def stream_chat(
|
| 37 |
+
message: str,
|
| 38 |
+
history: list,
|
| 39 |
+
system_prompt: str,
|
| 40 |
+
temperature: float = 0.8,
|
| 41 |
+
max_new_tokens: int = 1024,
|
| 42 |
+
top_p: float = 1.0,
|
| 43 |
+
top_k: int = 20,
|
| 44 |
+
penalty: float = 1.2,
|
| 45 |
+
):
|
| 46 |
+
print(f'message: {message}')
|
| 47 |
+
print(f'history: {history}')
|
| 48 |
|
| 49 |
+
conversation = [
|
| 50 |
+
{"role": "system", "content": system_prompt}
|
| 51 |
+
]
|
| 52 |
+
for prompt, answer in history:
|
| 53 |
+
conversation.extend([
|
| 54 |
+
{"role": "user", "content": prompt},
|
| 55 |
+
{"role": "assistant", "content": answer},
|
| 56 |
+
])
|
| 57 |
+
|
| 58 |
+
conversation.append({"role": "user", "content": message})
|
| 59 |
+
|
| 60 |
+
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(model.device)
|
| 61 |
+
|
| 62 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
|
| 63 |
+
|
| 64 |
+
generate_kwargs = dict(
|
| 65 |
+
input_ids=input_ids,
|
| 66 |
+
max_new_tokens = max_new_tokens,
|
| 67 |
+
do_sample = False if temperature == 0 else True,
|
| 68 |
+
top_p = top_p,
|
| 69 |
+
top_k = top_k,
|
| 70 |
+
temperature = temperature,
|
| 71 |
+
eos_token_id=[128001,128008,128009],
|
| 72 |
+
streamer=streamer,
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
with torch.no_grad():
|
| 76 |
+
thread = Thread(target=model.generate, kwargs=generate_kwargs)
|
| 77 |
+
thread.start()
|
| 78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
buffer = ""
|
|
|
|
| 80 |
for new_text in streamer:
|
| 81 |
buffer += new_text
|
|
|
|
|
|
|
| 82 |
yield buffer
|
| 83 |
|
| 84 |
+
# Vision model setup
|
| 85 |
+
models = {
|
| 86 |
+
"microsoft/Phi-3.5-vision-instruct": AutoModelForCausalLM.from_pretrained("microsoft/Phi-3.5-vision-instruct", trust_remote_code=True, torch_dtype="auto", _attn_implementation="flash_attention_2").cuda().eval()
|
| 87 |
+
}
|
| 88 |
+
|
| 89 |
+
processors = {
|
| 90 |
+
"microsoft/Phi-3.5-vision-instruct": AutoProcessor.from_pretrained("microsoft/Phi-3.5-vision-instruct", trust_remote_code=True)
|
| 91 |
+
}
|
| 92 |
+
|
| 93 |
+
user_prompt = '\n'
|
| 94 |
+
assistant_prompt = '\n'
|
| 95 |
+
prompt_suffix = "\n"
|
| 96 |
+
|
| 97 |
+
# Vision model tab function
|
| 98 |
+
@spaces.GPU()
|
| 99 |
+
def stream_vision(image, text_input=None, model_id="microsoft/Phi-3.5-vision-instruct"):
|
| 100 |
+
model = models[model_id]
|
| 101 |
+
processor = processors[model_id]
|
| 102 |
+
|
| 103 |
+
# Prepare the image list and corresponding tags
|
| 104 |
+
images = [Image.fromarray(image).convert("RGB")]
|
| 105 |
+
placeholder = "<|image_1|>\n" # Using the image tag as per the example
|
| 106 |
+
|
| 107 |
+
# Construct the prompt with the image tag and the user's text input
|
| 108 |
+
if text_input:
|
| 109 |
+
prompt_content = placeholder + text_input
|
| 110 |
+
else:
|
| 111 |
+
prompt_content = placeholder
|
| 112 |
+
|
| 113 |
+
messages = [
|
| 114 |
+
{"role": "user", "content": prompt_content},
|
| 115 |
+
]
|
| 116 |
+
|
| 117 |
+
# Apply the chat template to the messages
|
| 118 |
+
prompt = processor.tokenizer.apply_chat_template(
|
| 119 |
+
messages,
|
| 120 |
+
tokenize=False,
|
| 121 |
+
add_generation_prompt=True
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
# Process the inputs with the processor
|
| 125 |
+
inputs = processor(prompt, images, return_tensors="pt").to("cuda:0")
|
| 126 |
+
|
| 127 |
+
# Generation parameters
|
| 128 |
+
generation_args = {
|
| 129 |
+
"max_new_tokens": 1000,
|
| 130 |
+
"temperature": 0.0,
|
| 131 |
+
"do_sample": False,
|
| 132 |
+
}
|
| 133 |
+
|
| 134 |
+
# Generate the response
|
| 135 |
+
generate_ids = model.generate(
|
| 136 |
+
**inputs,
|
| 137 |
+
eos_token_id=processor.tokenizer.eos_token_id,
|
| 138 |
+
**generation_args
|
| 139 |
+
)
|
| 140 |
+
|
| 141 |
+
# Remove input tokens from the generated response
|
| 142 |
+
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
|
| 143 |
+
|
| 144 |
+
# Decode the generated output
|
| 145 |
+
response = processor.batch_decode(
|
| 146 |
+
generate_ids,
|
| 147 |
+
skip_special_tokens=True,
|
| 148 |
+
clean_up_tokenization_spaces=False
|
| 149 |
+
)[0]
|
| 150 |
+
|
| 151 |
+
return response
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
|
| 155 |
css = """
|
| 156 |
footer {
|
| 157 |
visibility: hidden;
|
| 158 |
}
|
| 159 |
"""
|
| 160 |
|
| 161 |
+
# Gradio app with two tabs
|
| 162 |
+
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
|
| 163 |
+
|
| 164 |
+
with gr.Tab("Chatbot"):
|
| 165 |
+
chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER)
|
| 166 |
+
gr.ChatInterface(
|
| 167 |
+
fn=stream_chat,
|
| 168 |
+
chatbot=chatbot,
|
| 169 |
+
fill_height=True,
|
| 170 |
+
additional_inputs_accordion=gr.Accordion(label="โ๏ธ Parameters", open=False, render=False),
|
| 171 |
+
additional_inputs=[
|
| 172 |
+
gr.Textbox(
|
| 173 |
+
value="You are a helpful assistant",
|
| 174 |
+
label="System Prompt",
|
| 175 |
+
render=False,
|
| 176 |
+
),
|
| 177 |
+
gr.Slider(
|
| 178 |
+
minimum=0,
|
| 179 |
+
maximum=1,
|
| 180 |
+
step=0.1,
|
| 181 |
+
value=0.8,
|
| 182 |
+
label="Temperature",
|
| 183 |
+
render=False,
|
| 184 |
+
),
|
| 185 |
+
gr.Slider(
|
| 186 |
+
minimum=128,
|
| 187 |
+
maximum=8192,
|
| 188 |
+
step=1,
|
| 189 |
+
value=1024,
|
| 190 |
+
label="Max new tokens",
|
| 191 |
+
render=False,
|
| 192 |
+
),
|
| 193 |
+
gr.Slider(
|
| 194 |
+
minimum=0.0,
|
| 195 |
+
maximum=1.0,
|
| 196 |
+
step=0.1,
|
| 197 |
+
value=1.0,
|
| 198 |
+
label="top_p",
|
| 199 |
+
render=False,
|
| 200 |
+
),
|
| 201 |
+
gr.Slider(
|
| 202 |
+
minimum=1,
|
| 203 |
+
maximum=20,
|
| 204 |
+
step=1,
|
| 205 |
+
value=20,
|
| 206 |
+
label="top_k",
|
| 207 |
+
render=False,
|
| 208 |
+
),
|
| 209 |
+
gr.Slider(
|
| 210 |
+
minimum=0.0,
|
| 211 |
+
maximum=2.0,
|
| 212 |
+
step=0.1,
|
| 213 |
+
value=1.2,
|
| 214 |
+
label="Repetition penalty",
|
| 215 |
+
render=False,
|
| 216 |
+
),
|
| 217 |
+
],
|
| 218 |
+
examples=[
|
| 219 |
+
["How to make a self-driving car?"],
|
| 220 |
+
["Give me a creative idea to establish a startup"],
|
| 221 |
+
["How can I improve my programming skills?"],
|
| 222 |
+
["Show me a code snippet of a website's sticky header in CSS and JavaScript."],
|
| 223 |
+
],
|
| 224 |
+
cache_examples=False,
|
| 225 |
+
)
|
| 226 |
+
with gr.Tab("Vision"):
|
| 227 |
+
with gr.Row():
|
| 228 |
+
input_img = gr.Image(label="Input Picture")
|
| 229 |
+
with gr.Row():
|
| 230 |
+
model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value="microsoft/Phi-3.5-vision-instruct")
|
| 231 |
+
with gr.Row():
|
| 232 |
+
text_input = gr.Textbox(label="Question")
|
| 233 |
+
with gr.Row():
|
| 234 |
+
submit_btn = gr.Button(value="Submit")
|
| 235 |
+
with gr.Row():
|
| 236 |
+
output_text = gr.Textbox(label="Output Text")
|
| 237 |
+
|
| 238 |
+
submit_btn.click(stream_vision, [input_img, text_input, model_selector], [output_text])
|
| 239 |
+
|
| 240 |
+
gr.HTML(footer)
|
| 241 |
+
|
| 242 |
+
# Launch the combined app
|
| 243 |
+
demo.launch(debug=True)
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
|