File size: 890 Bytes
7771401 3e12b50 3ad626a 7771401 3ac75c6 267c79d 7771401 3ac75c6 267c79d 3ac75c6 267c79d 3ac75c6 9d752b7 7771401 9d752b7 7771401 9d752b7 267c79d 9d752b7 3ac75c6 7771401 f88f3d8 3e12b50 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
from PIL import Image
import gradio as gr
from controlnet_aux import OpenposeDetector
# Load OpenPose detector
openpose = OpenposeDetector.from_pretrained("lllyasviel/ControlNet")
def generate_pose(image, use_openpose=True):
img = image.convert("RGB")
if use_openpose:
result = openpose(img)
else:
result = img
if not isinstance(result, Image.Image):
result = Image.fromarray(result)
return result
# Gradio UI
demo = gr.Interface(
fn=generate_pose,
inputs=[
gr.Image(type="pil", label="Upload Image"),
gr.Checkbox(value=True, label="Use OpenPose (default: true)"),
],
outputs=gr.Image(type="pil", label="Pose Output"),
title="OpenPose Pose Generator",
description="Generate full body pose including face and hands."
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860)
|