akhaliq HF Staff commited on
Commit
fe7f387
·
verified ·
1 Parent(s): ebc972e

Update Gradio app with multiple files

Browse files
Files changed (1) hide show
  1. app.py +8 -18
app.py CHANGED
@@ -1,7 +1,7 @@
1
  import spaces
2
  import gradio as gr
3
  import torch
4
- from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
5
  from PIL import Image
6
  import numpy as np
7
  from typing import List, Dict, Any, Optional, Tuple
@@ -12,9 +12,9 @@ import base64
12
  model_id = "Qwen/Qwen3-VL-4B-Instruct"
13
 
14
  # Load model with optimizations for inference
15
- model = Qwen2VLForConditionalGeneration.from_pretrained(
16
  model_id,
17
- torch_dtype=torch.bfloat16,
18
  device_map="auto"
19
  )
20
  processor = AutoProcessor.from_pretrained(model_id)
@@ -72,24 +72,14 @@ def process_chat_message(
72
  })
73
 
74
  # Prepare inputs for the model
75
- text = processor.apply_chat_template(
76
  messages,
77
- tokenize=False,
78
- add_generation_prompt=True
 
 
79
  )
80
 
81
- if image is not None:
82
- inputs = processor(
83
- text=[text],
84
- images=[image],
85
- return_tensors="pt"
86
- ).to(model.device)
87
- else:
88
- inputs = processor(
89
- text=[text],
90
- return_tensors="pt"
91
- ).to(model.device)
92
-
93
  # Generate response
94
  with torch.no_grad():
95
  generated_ids = model.generate(
 
1
  import spaces
2
  import gradio as gr
3
  import torch
4
+ from transformers import Qwen3VLForConditionalGeneration, AutoProcessor
5
  from PIL import Image
6
  import numpy as np
7
  from typing import List, Dict, Any, Optional, Tuple
 
12
  model_id = "Qwen/Qwen3-VL-4B-Instruct"
13
 
14
  # Load model with optimizations for inference
15
+ model = Qwen3VLForConditionalGeneration.from_pretrained(
16
  model_id,
17
+ dtype="auto",
18
  device_map="auto"
19
  )
20
  processor = AutoProcessor.from_pretrained(model_id)
 
72
  })
73
 
74
  # Prepare inputs for the model
75
+ inputs = processor.apply_chat_template(
76
  messages,
77
+ tokenize=True,
78
+ add_generation_prompt=True,
79
+ return_dict=True,
80
+ return_tensors="pt"
81
  )
82
 
 
 
 
 
 
 
 
 
 
 
 
 
83
  # Generate response
84
  with torch.no_grad():
85
  generated_ids = model.generate(