Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -47,7 +47,66 @@ def compute_metrics(eval_pred):
|
|
| 47 |
#Before passing your predictions to compute, you need to convert the predictions to logits (remember all Transformers models return logits):
|
| 48 |
return metric.compute(predictions=predictions, references=labels)
|
| 49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
|
|
|
| 51 |
###################################################################################
|
| 52 |
#Access-Token (in Secrets)
|
| 53 |
|
|
@@ -162,11 +221,16 @@ print("done")
|
|
| 162 |
#trainer.push_to_hub("alexkueck/model/finetune-tis")
|
| 163 |
#print("done")
|
| 164 |
|
| 165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
|
| 167 |
#######################################################################
|
| 168 |
#Darstellung mit Gradio
|
| 169 |
-
|
| 170 |
with gr.Blocks() as demo:
|
| 171 |
name = gr.Textbox(label="Model")
|
| 172 |
output = gr.Textbox(label="Output Box")
|
|
|
|
| 47 |
#Before passing your predictions to compute, you need to convert the predictions to logits (remember all Transformers models return logits):
|
| 48 |
return metric.compute(predictions=predictions, references=labels)
|
| 49 |
|
| 50 |
+
#neues Model testen nach dem Training
|
| 51 |
+
########################################################################
|
| 52 |
+
#Chat KI nutzen, um Text zu generieren...
|
| 53 |
+
def predict(text,
|
| 54 |
+
history='',
|
| 55 |
+
top_p=0.3,
|
| 56 |
+
temperature=0.9,
|
| 57 |
+
max_length_tokens=1024,
|
| 58 |
+
max_context_length_tokens=2048,):
|
| 59 |
+
if text=="":
|
| 60 |
+
return
|
| 61 |
+
try:
|
| 62 |
+
model
|
| 63 |
+
except:
|
| 64 |
+
yield [[text,"No Model Found"]],[],"No Model Found"
|
| 65 |
+
return
|
| 66 |
+
|
| 67 |
+
inputs = generate_prompt_with_history(text,history,tokenizer,max_length=max_context_length_tokens)
|
| 68 |
+
if inputs is None:
|
| 69 |
+
return
|
| 70 |
+
else:
|
| 71 |
+
prompt,inputs=inputs
|
| 72 |
+
begin_length = len(prompt)
|
| 73 |
+
|
| 74 |
+
input_ids = inputs["input_ids"][:,-max_context_length_tokens:].to(device)
|
| 75 |
+
torch.cuda.empty_cache()
|
| 76 |
+
|
| 77 |
+
#torch.no_grad() bedeutet, dass für die betreffenden tensoren keine Ableitungen berechnet werden bei der backpropagation
|
| 78 |
+
#hier soll das NN ja auch nicht geändert werden 8backprop ist nicht nötig), da es um interference-prompts geht!
|
| 79 |
+
with torch.no_grad():
|
| 80 |
+
#die vergangenen prompts werden alle als Tupel in history abgelegt sortiert nach 'Human' und 'AI'- dass sind daher auch die stop-words, die den jeweils nächsten Eintrag kennzeichnen
|
| 81 |
+
for x in greedy_search(input_ids,model,tokenizer,stop_words=["[|Human|]", "[|AI|]"],max_length=max_length_tokens,temperature=temperature,top_p=top_p):
|
| 82 |
+
if is_stop_word_or_prefix(x,["[|Human|]", "[|AI|]"]) is False:
|
| 83 |
+
if "[|Human|]" in x:
|
| 84 |
+
x = x[:x.index("[|Human|]")].strip()
|
| 85 |
+
if "[|AI|]" in x:
|
| 86 |
+
x = x[:x.index("[|AI|]")].strip()
|
| 87 |
+
x = x.strip()
|
| 88 |
+
a, b= [[y[0],convert_to_markdown(y[1])] for y in history]+[[text, convert_to_markdown(x)]],history + [[text,x]]
|
| 89 |
+
print("Erzeuge")
|
| 90 |
+
return
|
| 91 |
+
if shared_state.interrupted:
|
| 92 |
+
shared_state.recover()
|
| 93 |
+
try:
|
| 94 |
+
print("Erfolg")
|
| 95 |
+
return
|
| 96 |
+
except:
|
| 97 |
+
pass
|
| 98 |
+
del input_ids
|
| 99 |
+
gc.collect()
|
| 100 |
+
torch.cuda.empty_cache()
|
| 101 |
+
|
| 102 |
+
try:
|
| 103 |
+
print("erfolg")
|
| 104 |
+
except:
|
| 105 |
+
pass
|
| 106 |
+
|
| 107 |
+
|
| 108 |
|
| 109 |
+
###################################################################################
|
| 110 |
###################################################################################
|
| 111 |
#Access-Token (in Secrets)
|
| 112 |
|
|
|
|
| 221 |
#trainer.push_to_hub("alexkueck/model/finetune-tis")
|
| 222 |
#print("done")
|
| 223 |
|
| 224 |
+
|
| 225 |
+
|
| 226 |
+
##############################################
|
| 227 |
+
#Testen des fine-tuned Modells
|
| 228 |
+
print("Predict")
|
| 229 |
+
predict("Was ist Tis?")
|
| 230 |
|
| 231 |
#######################################################################
|
| 232 |
#Darstellung mit Gradio
|
| 233 |
+
'''
|
| 234 |
with gr.Blocks() as demo:
|
| 235 |
name = gr.Textbox(label="Model")
|
| 236 |
output = gr.Textbox(label="Output Box")
|