Upload 3 files
Browse files- Dockerfile +23 -0
- emotions_pl.py +81 -0
- requirements.txt +5 -0
Dockerfile
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# U偶yj oficjalnego obrazu Pythona jako bazy
|
| 2 |
+
FROM python:3.9-slim-buster
|
| 3 |
+
|
| 4 |
+
# Ustaw katalog roboczy wewn膮trz kontenera
|
| 5 |
+
RUN useradd -m -u 1000 user
|
| 6 |
+
WORKDIR /app
|
| 7 |
+
|
| 8 |
+
# Skopiuj pliki requirements.txt i zainstaluj zale偶no艣ci
|
| 9 |
+
COPY --chown=user requirements.txt .
|
| 10 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
| 11 |
+
|
| 12 |
+
# Skopiuj pozosta艂e pliki aplikacji
|
| 13 |
+
COPY --chown=user . /app
|
| 14 |
+
|
| 15 |
+
RUN mkdir ./.cache
|
| 16 |
+
|
| 17 |
+
# Ustaw zmienn膮 艣rodowiskow膮 PORT, kt贸ra b臋dzie u偶ywana przez FastAPI/Uvicorn
|
| 18 |
+
# Hugging Face Spaces cz臋sto udost臋pnia port 7860 lub 80
|
| 19 |
+
ENV PORT 7860
|
| 20 |
+
|
| 21 |
+
# Uruchom aplikacj臋 Uvicorn, gdy kontener zostanie uruchomiony
|
| 22 |
+
# --host 0.0.0.0 jest kluczowe, aby serwer nas艂uchiwa艂 na wszystkich interfejsach
|
| 23 |
+
CMD ["uvicorn", "emotions_pl:app", "--host", "0.0.0.0", "--port", "7860"]
|
emotions_pl.py
ADDED
|
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import uvicorn
|
| 5 |
+
from fastapi import FastAPI, HTTPException
|
| 6 |
+
from fastapi.responses import JSONResponse
|
| 7 |
+
from pydantic import BaseModel
|
| 8 |
+
from transformers import pipeline
|
| 9 |
+
|
| 10 |
+
# Utw贸rz instancj臋 FastAPI
|
| 11 |
+
app = FastAPI(
|
| 12 |
+
title="Emotions PL API",
|
| 13 |
+
description="API do oznaczaniem tagami emocji go-emotions-polish-gpt2-small-v0.0.1",
|
| 14 |
+
version="1.0.0"
|
| 15 |
+
)
|
| 16 |
+
|
| 17 |
+
# 艢cie偶ka do modelu - Hugging Face automatycznie pobierze model
|
| 18 |
+
MODEL_NAME = "nie3e/go-emotions-polish-gpt2-small-v0.0.1"
|
| 19 |
+
generator = None # Zostanie za艂adowany p贸藕niej
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
# Model wej艣ciowy dla POST request
|
| 23 |
+
class PredictRequest(BaseModel):
|
| 24 |
+
prompt: str
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
@app.on_event("startup")
|
| 28 |
+
async def startup_event():
|
| 29 |
+
global generator
|
| 30 |
+
|
| 31 |
+
if torch.cuda.is_available():
|
| 32 |
+
print("device: GPU")
|
| 33 |
+
else:
|
| 34 |
+
print("device: CPU")
|
| 35 |
+
print(f"艁adowanie modelu: {MODEL_NAME}...")
|
| 36 |
+
try:
|
| 37 |
+
# Mo偶esz dostosowa膰 device=0 (GPU) lub device=-1 (CPU) w zale偶no艣ci od wybranej maszyny Space
|
| 38 |
+
# Free tier spaces usually run on CPU, unless you explicitly select a GPU.
|
| 39 |
+
# It's safer to not specify device if you want it to auto-detect or default to CPU.
|
| 40 |
+
generator = pipeline(
|
| 41 |
+
"text-classification",
|
| 42 |
+
model=MODEL_NAME,
|
| 43 |
+
top_k=-1,
|
| 44 |
+
# device=0 if torch.cuda.is_available() else -1 # Odkomentuj dla detekcji GPU
|
| 45 |
+
)
|
| 46 |
+
print("Model za艂adowany pomy艣lnie!")
|
| 47 |
+
except Exception as e:
|
| 48 |
+
print(f"B艂膮d 艂adowania modelu: {e}")
|
| 49 |
+
# Mo偶esz zdecydowa膰, czy aplikacja ma zako艅czy膰 dzia艂anie, czy kontynuowa膰 bez modelu
|
| 50 |
+
# W przypadku b艂臋du 艂adowania modelu, endpoint generacji tekstu b臋dzie zwraca艂 b艂膮d
|
| 51 |
+
generator = None # Ustaw na None, aby sygnalizowa膰 problem
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
@app.get("/")
|
| 55 |
+
async def root():
|
| 56 |
+
return {"message": "Polish emotions API is running!"}
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
@app.post("/predict")
|
| 60 |
+
async def predict(request: PredictRequest):
|
| 61 |
+
if generator is None:
|
| 62 |
+
raise HTTPException(status_code=503, detail="Model nie zosta艂 za艂adowany lub wyst膮pi艂 b艂膮d.")
|
| 63 |
+
|
| 64 |
+
try:
|
| 65 |
+
generated_text = generator(
|
| 66 |
+
request.prompt
|
| 67 |
+
)
|
| 68 |
+
# Pipeline zwraca list臋 s艂ownik贸w, bierzemy pierwszy wynik
|
| 69 |
+
response_data = generated_text[0]
|
| 70 |
+
return JSONResponse(
|
| 71 |
+
content=response_data,
|
| 72 |
+
media_type="application/json; charset=utf-8"
|
| 73 |
+
)
|
| 74 |
+
# return {"generated_text": generated_text[0]["generated_text"]}
|
| 75 |
+
except Exception as e:
|
| 76 |
+
raise HTTPException(status_code=500, detail=f"B艂膮d podczas generowania tekstu: {e}")
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
# Uruchamianie serwera Uvicorn bezpo艣rednio (dla Dockera)
|
| 80 |
+
if __name__ == "__main__":
|
| 81 |
+
uvicorn.run(app, host="0.0.0.0", port=int(os.getenv("PORT", 7860)))
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
fastapi
|
| 2 |
+
uvicorn[standard]
|
| 3 |
+
transformers
|
| 4 |
+
torch
|
| 5 |
+
pydantic
|