On premise estimator v1
Browse files- __pycache__/utils.cpython-313.pyc +0 -0
- __pycache__/utils_on.cpython-313.pyc +0 -0
- app.py +116 -2
- utils_on.py +429 -0
__pycache__/utils.cpython-313.pyc
ADDED
|
Binary file (5.03 kB). View file
|
|
|
__pycache__/utils_on.cpython-313.pyc
ADDED
|
Binary file (14.4 kB). View file
|
|
|
app.py
CHANGED
|
@@ -2,6 +2,7 @@ import streamlit as st
|
|
| 2 |
import asyncio
|
| 3 |
import tokonomics
|
| 4 |
from utils import create_model_hierarchy
|
|
|
|
| 5 |
|
| 6 |
st.set_page_config(page_title="LLM Pricing App", layout="wide")
|
| 7 |
|
|
@@ -86,11 +87,25 @@ with st.sidebar:
|
|
| 86 |
st.divider()
|
| 87 |
st.sidebar.title("LLM Pricing Calculator")
|
| 88 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
# --------------------------
|
| 90 |
-
# Main Content Layout (
|
| 91 |
# --------------------------
|
| 92 |
-
|
|
|
|
|
|
|
|
|
|
| 93 |
|
|
|
|
|
|
|
| 94 |
with tab1:
|
| 95 |
st.header("LLM Pricing App")
|
| 96 |
|
|
@@ -177,7 +192,85 @@ with tab1:
|
|
| 177 |
st.session_state.pop("result", None)
|
| 178 |
st.rerun()
|
| 179 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
with tab2:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
st.markdown(
|
| 182 |
"""
|
| 183 |
## About This App
|
|
@@ -186,8 +279,29 @@ with tab2:
|
|
| 186 |
|
| 187 |
- The app downloads the latest pricing from the LiteLLM repository.
|
| 188 |
- Using simple maths to estimate the total tokens.
|
|
|
|
| 189 |
- Version 0.1
|
| 190 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 191 |
Website: [https://www.priam.ai](https://www.priam.ai)
|
| 192 |
"""
|
| 193 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import asyncio
|
| 3 |
import tokonomics
|
| 4 |
from utils import create_model_hierarchy
|
| 5 |
+
from utils_on import analyze_hf_model # New import for On Premise Estimator functionality
|
| 6 |
|
| 7 |
st.set_page_config(page_title="LLM Pricing App", layout="wide")
|
| 8 |
|
|
|
|
| 87 |
st.divider()
|
| 88 |
st.sidebar.title("LLM Pricing Calculator")
|
| 89 |
|
| 90 |
+
# Track active tab in session state
|
| 91 |
+
if "active_tab" not in st.session_state:
|
| 92 |
+
st.session_state.active_tab = "Model Selection"
|
| 93 |
+
|
| 94 |
+
def switch_tab(tab_name):
|
| 95 |
+
st.session_state.active_tab = tab_name
|
| 96 |
+
st.rerun()
|
| 97 |
+
|
| 98 |
+
|
| 99 |
# --------------------------
|
| 100 |
+
# Main Content Layout (Tabs)
|
| 101 |
# --------------------------
|
| 102 |
+
tab_labels = ["Model Selection", "On Premise Estimator", "About"]
|
| 103 |
+
tab_index = tab_labels.index(st.session_state.active_tab)
|
| 104 |
+
tabs = st.tabs(tab_labels)
|
| 105 |
+
tab1, tab2, tab3 = tabs
|
| 106 |
|
| 107 |
+
|
| 108 |
+
# ----- Tab 1: Model Selection -----
|
| 109 |
with tab1:
|
| 110 |
st.header("LLM Pricing App")
|
| 111 |
|
|
|
|
| 192 |
st.session_state.pop("result", None)
|
| 193 |
st.rerun()
|
| 194 |
|
| 195 |
+
|
| 196 |
+
# ----- Tab 2: On Premise Estimator -----
|
| 197 |
+
def format_analysis_report(analysis_result: dict) -> str:
|
| 198 |
+
"""Convert the raw analysis_result dict into a human-readable report."""
|
| 199 |
+
if "error" in analysis_result:
|
| 200 |
+
return f"**Error:** {analysis_result['error']}"
|
| 201 |
+
|
| 202 |
+
lines = []
|
| 203 |
+
lines.append(f"### Model Analysis Report for `{analysis_result.get('model_id', 'Unknown Model')}`\n")
|
| 204 |
+
lines.append(f"**Parameter Size:** {analysis_result.get('parameter_size', 'N/A')} Billion parameters\n")
|
| 205 |
+
lines.append(f"**Precision:** {analysis_result.get('precision', 'N/A')}\n")
|
| 206 |
+
|
| 207 |
+
vram = analysis_result.get("vram_requirements", {})
|
| 208 |
+
lines.append("#### VRAM Requirements:")
|
| 209 |
+
lines.append(f"- Model Size: {vram.get('model_size_gb', 0):.2f} GB")
|
| 210 |
+
lines.append(f"- KV Cache: {vram.get('kv_cache_gb', 0):.2f} GB")
|
| 211 |
+
lines.append(f"- Activations: {vram.get('activations_gb', 0):.2f} GB")
|
| 212 |
+
lines.append(f"- Overhead: {vram.get('overhead_gb', 0):.2f} GB")
|
| 213 |
+
lines.append(f"- **Total VRAM:** {vram.get('total_vram_gb', 0):.2f} GB\n")
|
| 214 |
+
|
| 215 |
+
compatible_gpus = analysis_result.get("compatible_gpus", [])
|
| 216 |
+
lines.append("#### Compatible GPUs:")
|
| 217 |
+
if compatible_gpus:
|
| 218 |
+
for gpu in compatible_gpus:
|
| 219 |
+
lines.append(f"- {gpu}")
|
| 220 |
+
else:
|
| 221 |
+
lines.append("- None found")
|
| 222 |
+
lines.append(f"\n**Largest Compatible GPU:** {analysis_result.get('largest_compatible_gpu', 'N/A')}\n")
|
| 223 |
+
|
| 224 |
+
gpu_perf = analysis_result.get("gpu_performance", {})
|
| 225 |
+
if gpu_perf:
|
| 226 |
+
lines.append("#### GPU Performance:")
|
| 227 |
+
for gpu, perf in gpu_perf.items():
|
| 228 |
+
lines.append(f"**{gpu}:**")
|
| 229 |
+
lines.append(f" - Tokens per Second: {perf.get('tokens_per_second', 0):.2f}")
|
| 230 |
+
lines.append(f" - FLOPs per Token: {perf.get('flops_per_token', 0):.2f}")
|
| 231 |
+
lines.append(f" - Effective TFLOPS: {perf.get('effective_tflops', 0):.2f}\n")
|
| 232 |
+
else:
|
| 233 |
+
lines.append("#### GPU Performance: N/A\n")
|
| 234 |
+
|
| 235 |
+
#model_info = analysis_result.get("model_info", {})
|
| 236 |
+
#lines.append("#### Model Information:")
|
| 237 |
+
#if model_info:
|
| 238 |
+
# if model_info.get("description"):
|
| 239 |
+
# lines.append(f"- Description: {model_info['description']}")
|
| 240 |
+
# if model_info.get("tags"):
|
| 241 |
+
# lines.append(f"- Tags: {', '.join(model_info['tags'])}")
|
| 242 |
+
#if model_info.get("downloads") is not None:
|
| 243 |
+
# lines.append(f"- Downloads: {model_info['downloads']}")
|
| 244 |
+
#if model_info.get("library"):
|
| 245 |
+
# lines.append(f"- Library: {model_info['library']}")
|
| 246 |
+
#else:
|
| 247 |
+
# lines.append("No additional model info available.")
|
| 248 |
+
|
| 249 |
+
return "\n".join(lines)
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
# ----- Tab 2: On Premise Estimator -----
|
| 253 |
with tab2:
|
| 254 |
+
st.header("On Premise Estimator")
|
| 255 |
+
st.markdown("Enter a Hugging Face model ID to perform an on premise analysis using the provided estimator.")
|
| 256 |
+
|
| 257 |
+
# Input for model ID with a default value
|
| 258 |
+
hf_model_id = st.text_input("Hugging Face Model ID", value="facebook/opt-1.3b")
|
| 259 |
+
|
| 260 |
+
if st.button("Analyze Model"):
|
| 261 |
+
st.session_state.active_tab = "On Premise Estimator"
|
| 262 |
+
with st.spinner("Analyzing model..."):
|
| 263 |
+
analysis_result = analyze_hf_model(hf_model_id)
|
| 264 |
+
st.session_state.analysis_result = analysis_result
|
| 265 |
+
st.rerun()
|
| 266 |
+
|
| 267 |
+
# Render if analysis result exists
|
| 268 |
+
if "analysis_result" in st.session_state:
|
| 269 |
+
report = format_analysis_report(st.session_state.analysis_result)
|
| 270 |
+
st.markdown(report)
|
| 271 |
+
|
| 272 |
+
# ----- Tab 3: About -----
|
| 273 |
+
with tab3:
|
| 274 |
st.markdown(
|
| 275 |
"""
|
| 276 |
## About This App
|
|
|
|
| 279 |
|
| 280 |
- The app downloads the latest pricing from the LiteLLM repository.
|
| 281 |
- Using simple maths to estimate the total tokens.
|
| 282 |
+
- helps you estimate hardware requirements for running open-source large language models (LLMs) on-premise using only the model ID from Hugging Face.
|
| 283 |
- Version 0.1
|
| 284 |
|
| 285 |
+
---
|
| 286 |
+
|
| 287 |
+
### 📌 Version History
|
| 288 |
+
|
| 289 |
+
| Version | Release Date | Key Feature Updates |
|
| 290 |
+
|--------|--------------|---------------------|
|
| 291 |
+
| `v1.0` | 2025-03-26 | Initial release with basic total tokens estimation|
|
| 292 |
+
| `v1.1` | 2025-04-06 | Added On premise Estimator Tab |
|
| 293 |
+
|
| 294 |
+
|
| 295 |
+
---
|
| 296 |
+
|
| 297 |
+
|
| 298 |
Website: [https://www.priam.ai](https://www.priam.ai)
|
| 299 |
"""
|
| 300 |
)
|
| 301 |
+
st.markdown(
|
| 302 |
+
"""
|
| 303 |
+
### Disclaimer
|
| 304 |
+
|
| 305 |
+
This app is for demonstration purposes only. Actual costs may vary based on usage patterns and other factors.
|
| 306 |
+
"""
|
| 307 |
+
)
|
utils_on.py
ADDED
|
@@ -0,0 +1,429 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import List, Dict, Tuple, Optional, Union
|
| 2 |
+
import re
|
| 3 |
+
import math
|
| 4 |
+
import requests
|
| 5 |
+
import numpy as np
|
| 6 |
+
from huggingface_hub import HfApi, ModelInfo
|
| 7 |
+
from huggingface_hub.utils import RepositoryNotFoundError, RevisionNotFoundError
|
| 8 |
+
|
| 9 |
+
def parse_model_entries(model_entries: List[str]) -> List[Dict[str, str]]:
|
| 10 |
+
"""
|
| 11 |
+
Parse a list of model entries into structured dictionaries with provider, model name, version, region, and type.
|
| 12 |
+
|
| 13 |
+
Args:
|
| 14 |
+
model_entries: List of model entry strings as found in models.txt
|
| 15 |
+
|
| 16 |
+
Returns:
|
| 17 |
+
List of dictionaries with parsed model information containing keys:
|
| 18 |
+
- provider: Name of the provider (e.g., 'azure', 'openai', 'anthropic', etc.)
|
| 19 |
+
- model_name: Base name of the model
|
| 20 |
+
- version: Version of the model (if available)
|
| 21 |
+
- region: Deployment region (if available)
|
| 22 |
+
- model_type: Type of the model (text, image, audio based on pattern analysis)
|
| 23 |
+
"""
|
| 24 |
+
parsed_models = []
|
| 25 |
+
|
| 26 |
+
# Common provider prefixes to identify
|
| 27 |
+
known_providers = [
|
| 28 |
+
'azure', 'bedrock', 'anthropic', 'openai', 'cohere', 'google',
|
| 29 |
+
'mistral', 'meta', 'amazon', 'ai21', 'anyscale', 'stability',
|
| 30 |
+
'cloudflare', 'databricks', 'cerebras', 'assemblyai'
|
| 31 |
+
]
|
| 32 |
+
|
| 33 |
+
# Image-related keywords to identify image models
|
| 34 |
+
image_indicators = ['dall-e', 'stable-diffusion', 'image', 'canvas', 'x-', 'steps']
|
| 35 |
+
|
| 36 |
+
# Audio-related keywords to identify audio models
|
| 37 |
+
audio_indicators = ['whisper', 'tts', 'audio', 'voice']
|
| 38 |
+
|
| 39 |
+
for entry in model_entries:
|
| 40 |
+
model_info = {
|
| 41 |
+
'provider': '',
|
| 42 |
+
'model_name': '',
|
| 43 |
+
'version': '',
|
| 44 |
+
'region': '',
|
| 45 |
+
'model_type': 'text' # Default to text
|
| 46 |
+
}
|
| 47 |
+
|
| 48 |
+
# Check for image models
|
| 49 |
+
if any(indicator in entry.lower() for indicator in image_indicators):
|
| 50 |
+
model_info['model_type'] = 'image'
|
| 51 |
+
|
| 52 |
+
# Check for audio models
|
| 53 |
+
elif any(indicator in entry.lower() for indicator in audio_indicators):
|
| 54 |
+
model_info['model_type'] = 'audio'
|
| 55 |
+
|
| 56 |
+
# Parse the entry based on common patterns
|
| 57 |
+
parts = entry.split('/')
|
| 58 |
+
|
| 59 |
+
# Handle region and provider extraction
|
| 60 |
+
if len(parts) >= 2:
|
| 61 |
+
# Extract provider from the beginning (common pattern)
|
| 62 |
+
if parts[0].lower() in known_providers:
|
| 63 |
+
model_info['provider'] = parts[0].lower()
|
| 64 |
+
|
| 65 |
+
# For bedrock and azure, the region is often the next part
|
| 66 |
+
if parts[0].lower() in ['bedrock', 'azure'] and len(parts) >= 3:
|
| 67 |
+
# Skip commitment parts if present
|
| 68 |
+
if 'commitment' not in parts[1]:
|
| 69 |
+
model_info['region'] = parts[1]
|
| 70 |
+
|
| 71 |
+
# The last part typically contains the model name and possibly version
|
| 72 |
+
model_with_version = parts[-1]
|
| 73 |
+
else:
|
| 74 |
+
# For single-part entries
|
| 75 |
+
model_with_version = entry
|
| 76 |
+
|
| 77 |
+
# Extract provider from model name if not already set
|
| 78 |
+
if not model_info['provider']:
|
| 79 |
+
# Look for known providers within the model name
|
| 80 |
+
for provider in known_providers:
|
| 81 |
+
if provider in model_with_version.lower() or f'{provider}.' in model_with_version.lower():
|
| 82 |
+
model_info['provider'] = provider
|
| 83 |
+
# Remove provider prefix if it exists at the beginning
|
| 84 |
+
if model_with_version.lower().startswith(f'{provider}.'):
|
| 85 |
+
model_with_version = model_with_version[len(provider) + 1:]
|
| 86 |
+
break
|
| 87 |
+
|
| 88 |
+
# Extract version information
|
| 89 |
+
version_match = re.search(r'[:.-]v(\d+(?:\.\d+)*(?:-\d+)?|\d+)(?::\d+)?$', model_with_version)
|
| 90 |
+
if version_match:
|
| 91 |
+
model_info['version'] = version_match.group(1)
|
| 92 |
+
# Remove version from model name
|
| 93 |
+
model_name = model_with_version[:version_match.start()]
|
| 94 |
+
else:
|
| 95 |
+
# Look for date-based versions like 2024-08-06
|
| 96 |
+
date_match = re.search(r'-(\d{4}-\d{2}-\d{2})$', model_with_version)
|
| 97 |
+
if date_match:
|
| 98 |
+
model_info['version'] = date_match.group(1)
|
| 99 |
+
model_name = model_with_version[:date_match.start()]
|
| 100 |
+
else:
|
| 101 |
+
model_name = model_with_version
|
| 102 |
+
|
| 103 |
+
# Clean up model name by removing trailing/leading separators
|
| 104 |
+
model_info['model_name'] = model_name.strip('.-:')
|
| 105 |
+
|
| 106 |
+
parsed_models.append(model_info)
|
| 107 |
+
|
| 108 |
+
return parsed_models
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
def create_model_hierarchy(model_entries: List[str]) -> Dict[str, Dict[str, Dict[str, Dict[str, str]]]]:
|
| 112 |
+
"""
|
| 113 |
+
Organize model entries into a nested dictionary structure by provider, model, version, and region.
|
| 114 |
+
|
| 115 |
+
Args:
|
| 116 |
+
model_entries: List of model entry strings as found in models.txt
|
| 117 |
+
|
| 118 |
+
Returns:
|
| 119 |
+
Nested dictionary with the structure:
|
| 120 |
+
Provider -> Model -> Version -> Region = full model string
|
| 121 |
+
If region or version is None, they are replaced with "NA".
|
| 122 |
+
"""
|
| 123 |
+
# Parse the model entries to get structured information
|
| 124 |
+
parsed_models = parse_model_entries(model_entries)
|
| 125 |
+
|
| 126 |
+
# Create the nested dictionary structure
|
| 127 |
+
hierarchy = {}
|
| 128 |
+
|
| 129 |
+
for i, model_info in enumerate(parsed_models):
|
| 130 |
+
provider = model_info['provider'] if model_info['provider'] else 'unknown'
|
| 131 |
+
model_name = model_info['model_name']
|
| 132 |
+
version = model_info['version'] if model_info['version'] else 'NA'
|
| 133 |
+
# For Azure models, always use 'NA' as region since they are globally available
|
| 134 |
+
region = 'NA' if provider == 'azure' else (model_info['region'] if model_info['region'] else 'NA')
|
| 135 |
+
|
| 136 |
+
# Initialize nested dictionaries if they don't exist
|
| 137 |
+
if provider not in hierarchy:
|
| 138 |
+
hierarchy[provider] = {}
|
| 139 |
+
|
| 140 |
+
if model_name not in hierarchy[provider]:
|
| 141 |
+
hierarchy[provider][model_name] = {}
|
| 142 |
+
|
| 143 |
+
if version not in hierarchy[provider][model_name]:
|
| 144 |
+
hierarchy[provider][model_name][version] = {}
|
| 145 |
+
|
| 146 |
+
# Store the full model string at the leaf node
|
| 147 |
+
hierarchy[provider][model_name][version][region] = model_entries[i]
|
| 148 |
+
|
| 149 |
+
return hierarchy
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
# NVIDIA GPU specifications - Name: (VRAM in GB, FP16 TOPS)
|
| 153 |
+
NVIDIA_GPUS = {
|
| 154 |
+
"RTX 3050": (8, 18),
|
| 155 |
+
"RTX 3060": (12, 25),
|
| 156 |
+
"RTX 3070": (8, 40),
|
| 157 |
+
"RTX 3080": (10, 58),
|
| 158 |
+
"RTX 3090": (24, 71),
|
| 159 |
+
"RTX 4060": (8, 41),
|
| 160 |
+
"RTX 4070": (12, 56),
|
| 161 |
+
"RTX 4080": (16, 113),
|
| 162 |
+
"RTX 4090": (24, 165),
|
| 163 |
+
"RTX A2000": (6, 20),
|
| 164 |
+
"RTX A4000": (16, 40),
|
| 165 |
+
"RTX A5000": (24, 64),
|
| 166 |
+
"RTX A6000": (48, 75),
|
| 167 |
+
"A100 40GB": (40, 312),
|
| 168 |
+
"A100 80GB": (80, 312),
|
| 169 |
+
"H100 80GB": (80, 989),
|
| 170 |
+
}
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
def get_hf_model_info(model_id: str) -> Optional[ModelInfo]:
|
| 174 |
+
"""
|
| 175 |
+
Retrieve model information from the Hugging Face Hub.
|
| 176 |
+
|
| 177 |
+
Args:
|
| 178 |
+
model_id: Hugging Face model ID (e.g., "facebook/opt-1.3b")
|
| 179 |
+
|
| 180 |
+
Returns:
|
| 181 |
+
ModelInfo object or None if model not found
|
| 182 |
+
"""
|
| 183 |
+
try:
|
| 184 |
+
api = HfApi()
|
| 185 |
+
model_info = api.model_info(model_id)
|
| 186 |
+
return model_info
|
| 187 |
+
except (RepositoryNotFoundError, RevisionNotFoundError) as e:
|
| 188 |
+
print(f"Error fetching model info: {e}")
|
| 189 |
+
return None
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
def extract_model_size(model_info: ModelInfo) -> Optional[Tuple[float, str]]:
|
| 193 |
+
"""
|
| 194 |
+
Extract the parameter size and precision from model information.
|
| 195 |
+
|
| 196 |
+
Args:
|
| 197 |
+
model_info: ModelInfo object from Hugging Face Hub
|
| 198 |
+
|
| 199 |
+
Returns:
|
| 200 |
+
Tuple of (parameter size in billions, precision) or None if not found
|
| 201 |
+
"""
|
| 202 |
+
# Try to get parameter count from model card
|
| 203 |
+
if model_info.card_data is not None:
|
| 204 |
+
if "model-index" in model_info.card_data and isinstance(model_info.card_data["model-index"], list):
|
| 205 |
+
for item in model_info.card_data["model-index"]:
|
| 206 |
+
if "parameters" in item:
|
| 207 |
+
return float(item["parameters"]) / 1e9, "fp16" # Convert to billions and assume fp16
|
| 208 |
+
|
| 209 |
+
# Try to extract from model name
|
| 210 |
+
name = model_info.id.lower()
|
| 211 |
+
size_patterns = [
|
| 212 |
+
r"(\d+(\.\d+)?)b", # matches patterns like "1.3b" or "7b"
|
| 213 |
+
r"-(\d+(\.\d+)?)b", # matches patterns like "llama-7b"
|
| 214 |
+
r"(\d+(\.\d+)?)-b", # matches other formatting variations
|
| 215 |
+
]
|
| 216 |
+
|
| 217 |
+
for pattern in size_patterns:
|
| 218 |
+
match = re.search(pattern, name)
|
| 219 |
+
if match:
|
| 220 |
+
size_str = match.group(1)
|
| 221 |
+
return float(size_str), "fp16" # Default to fp16
|
| 222 |
+
|
| 223 |
+
# Extract precision if available
|
| 224 |
+
precision = "fp16" # Default
|
| 225 |
+
precision_patterns = {"fp16": r"fp16", "int8": r"int8", "int4": r"int4", "fp32": r"fp32"}
|
| 226 |
+
for prec, pattern in precision_patterns.items():
|
| 227 |
+
if re.search(pattern, name):
|
| 228 |
+
precision = prec
|
| 229 |
+
break
|
| 230 |
+
|
| 231 |
+
# If couldn't determine size, check sibling models or readme
|
| 232 |
+
if model_info.siblings:
|
| 233 |
+
for sibling in model_info.siblings:
|
| 234 |
+
if sibling.rfilename == "README.md" and sibling.size < 100000: # reasonable size for readme
|
| 235 |
+
try:
|
| 236 |
+
content = requests.get(sibling.lfs.url).text
|
| 237 |
+
param_pattern = r"(\d+(\.\d+)?)\s*[Bb](illion)?\s*[Pp]arameters"
|
| 238 |
+
match = re.search(param_pattern, content)
|
| 239 |
+
if match:
|
| 240 |
+
return float(match.group(1)), precision
|
| 241 |
+
except:
|
| 242 |
+
pass
|
| 243 |
+
|
| 244 |
+
# As a last resort, try to analyze config.json if it exists
|
| 245 |
+
config_sibling = next((s for s in model_info.siblings if s.rfilename == "config.json"), None)
|
| 246 |
+
if config_sibling:
|
| 247 |
+
try:
|
| 248 |
+
config = requests.get(config_sibling.lfs.url).json()
|
| 249 |
+
if "n_params" in config:
|
| 250 |
+
return float(config["n_params"]) / 1e9, precision
|
| 251 |
+
# Calculate from architecture if available
|
| 252 |
+
if all(k in config for k in ["n_layer", "n_head", "n_embd"]):
|
| 253 |
+
n_layer = config["n_layer"]
|
| 254 |
+
n_embd = config["n_embd"]
|
| 255 |
+
n_head = config["n_head"]
|
| 256 |
+
# Transformer parameter estimation formula
|
| 257 |
+
params = 12 * n_layer * (n_embd**2) * (1 + 13 / (12 * n_embd))
|
| 258 |
+
return params / 1e9, precision
|
| 259 |
+
except:
|
| 260 |
+
pass
|
| 261 |
+
|
| 262 |
+
return None
|
| 263 |
+
|
| 264 |
+
|
| 265 |
+
def calculate_vram_requirements(param_size: float, precision: str = "fp16") -> Dict[str, float]:
|
| 266 |
+
"""
|
| 267 |
+
Calculate VRAM requirements for inference using the EleutherAI transformer math formula.
|
| 268 |
+
|
| 269 |
+
Args:
|
| 270 |
+
param_size: Model size in billions of parameters
|
| 271 |
+
precision: Model precision ("fp32", "fp16", "int8", "int4")
|
| 272 |
+
|
| 273 |
+
Returns:
|
| 274 |
+
Dictionary with various memory requirements in GB
|
| 275 |
+
"""
|
| 276 |
+
# Convert parameters to actual count
|
| 277 |
+
param_count = param_size * 1e9
|
| 278 |
+
|
| 279 |
+
# Size per parameter based on precision
|
| 280 |
+
bytes_per_param = {
|
| 281 |
+
"fp32": 4,
|
| 282 |
+
"fp16": 2,
|
| 283 |
+
"int8": 1,
|
| 284 |
+
"int4": 0.5, # 4 bits = 0.5 bytes
|
| 285 |
+
}[precision]
|
| 286 |
+
|
| 287 |
+
# Base model size (parameters * bytes per parameter)
|
| 288 |
+
model_size_gb = (param_count * bytes_per_param) / (1024**3)
|
| 289 |
+
|
| 290 |
+
# EleutherAI formula components for inference memory
|
| 291 |
+
# Layer activations - scales with sequence length
|
| 292 |
+
activation_factor = 1.2 # varies by architecture
|
| 293 |
+
|
| 294 |
+
# KV cache size (scales with batch size and sequence length)
|
| 295 |
+
# Estimate for single batch, 2048-token context
|
| 296 |
+
kv_cache_size_gb = (param_count * 0.0625 * bytes_per_param) / (1024**3) # ~6.25% of params for KV cache
|
| 297 |
+
|
| 298 |
+
# Total VRAM needed for inference
|
| 299 |
+
total_inference_gb = model_size_gb + (model_size_gb * activation_factor) + kv_cache_size_gb
|
| 300 |
+
|
| 301 |
+
# Add overhead for CUDA, buffers, and fragmentation
|
| 302 |
+
overhead_gb = 0.8 # 800 MB overhead
|
| 303 |
+
|
| 304 |
+
# Dynamic computation graph allocation
|
| 305 |
+
compute_overhead_factor = 0.1 # varies based on attention computation method
|
| 306 |
+
|
| 307 |
+
# Final VRAM estimate
|
| 308 |
+
total_vram_required_gb = total_inference_gb + overhead_gb + (total_inference_gb * compute_overhead_factor)
|
| 309 |
+
|
| 310 |
+
return {
|
| 311 |
+
"model_size_gb": model_size_gb,
|
| 312 |
+
"kv_cache_gb": kv_cache_size_gb,
|
| 313 |
+
"activations_gb": model_size_gb * activation_factor,
|
| 314 |
+
"overhead_gb": overhead_gb + (total_inference_gb * compute_overhead_factor),
|
| 315 |
+
"total_vram_gb": total_vram_required_gb
|
| 316 |
+
}
|
| 317 |
+
|
| 318 |
+
|
| 319 |
+
def find_compatible_gpus(vram_required: float) -> List[str]:
|
| 320 |
+
"""
|
| 321 |
+
Find NVIDIA GPUs that can run a model requiring the specified VRAM.
|
| 322 |
+
|
| 323 |
+
Args:
|
| 324 |
+
vram_required: Required VRAM in GB
|
| 325 |
+
|
| 326 |
+
Returns:
|
| 327 |
+
List of compatible GPU names sorted by VRAM capacity (smallest first)
|
| 328 |
+
"""
|
| 329 |
+
compatible_gpus = [(name, specs[0]) for name, specs in NVIDIA_GPUS.items() if specs[0] >= vram_required]
|
| 330 |
+
return [gpu[0] for gpu in sorted(compatible_gpus, key=lambda x: x[1])]
|
| 331 |
+
|
| 332 |
+
|
| 333 |
+
def estimate_performance(param_size: float, precision: str, gpu_name: str) -> Dict[str, float]:
|
| 334 |
+
"""
|
| 335 |
+
Estimate token/second performance for a model on a specific GPU.
|
| 336 |
+
|
| 337 |
+
Args:
|
| 338 |
+
param_size: Model size in billions of parameters
|
| 339 |
+
precision: Model precision
|
| 340 |
+
gpu_name: Name of the NVIDIA GPU
|
| 341 |
+
|
| 342 |
+
Returns:
|
| 343 |
+
Dictionary with performance metrics
|
| 344 |
+
"""
|
| 345 |
+
if gpu_name not in NVIDIA_GPUS:
|
| 346 |
+
return {"tokens_per_second": 0, "tflops_utilization": 0}
|
| 347 |
+
|
| 348 |
+
gpu_vram, gpu_tops = NVIDIA_GPUS[gpu_name]
|
| 349 |
+
|
| 350 |
+
# Calculate FLOPs per token (based on model size)
|
| 351 |
+
# Formula: ~6 * num_parameters FLOPs per token (inference)
|
| 352 |
+
flops_per_token = 6 * param_size * 1e9
|
| 353 |
+
|
| 354 |
+
# Convert TOPS to TFLOPS based on precision
|
| 355 |
+
precision_factor = 1.0 if precision == "fp32" else 2.0 if precision == "fp16" else 4.0 if precision in ["int8", "int4"] else 1.0
|
| 356 |
+
gpu_tflops = gpu_tops * precision_factor
|
| 357 |
+
|
| 358 |
+
# Practical utilization (GPUs rarely achieve 100% of theoretical performance)
|
| 359 |
+
practical_utilization = 0.6 # 60% utilization
|
| 360 |
+
|
| 361 |
+
# Calculate tokens per second
|
| 362 |
+
effective_tflops = gpu_tflops * practical_utilization
|
| 363 |
+
tokens_per_second = (effective_tflops * 1e12) / flops_per_token
|
| 364 |
+
|
| 365 |
+
return {
|
| 366 |
+
"tokens_per_second": tokens_per_second,
|
| 367 |
+
"flops_per_token": flops_per_token,
|
| 368 |
+
"tflops_utilization": practical_utilization,
|
| 369 |
+
"effective_tflops": effective_tflops
|
| 370 |
+
}
|
| 371 |
+
|
| 372 |
+
|
| 373 |
+
def analyze_hf_model(model_id: str) -> Dict[str, any]:
|
| 374 |
+
"""
|
| 375 |
+
Comprehensive analysis of a Hugging Face model:
|
| 376 |
+
- Downloads model information
|
| 377 |
+
- Extracts parameter size and precision
|
| 378 |
+
- Estimates VRAM requirements
|
| 379 |
+
- Identifies compatible NVIDIA GPUs
|
| 380 |
+
- Estimates performance on these GPUs
|
| 381 |
+
|
| 382 |
+
Args:
|
| 383 |
+
model_id: Hugging Face model ID (e.g., "facebook/opt-1.3b")
|
| 384 |
+
|
| 385 |
+
Returns:
|
| 386 |
+
Dictionary with analysis results or error message
|
| 387 |
+
"""
|
| 388 |
+
# Get model information
|
| 389 |
+
model_info = get_hf_model_info(model_id)
|
| 390 |
+
if not model_info:
|
| 391 |
+
return {"error": f"Model {model_id} not found on Hugging Face"}
|
| 392 |
+
|
| 393 |
+
# Extract model size and precision
|
| 394 |
+
size_info = extract_model_size(model_info)
|
| 395 |
+
if not size_info:
|
| 396 |
+
return {"error": f"Couldn't determine parameter count for {model_id}"}
|
| 397 |
+
|
| 398 |
+
param_size, precision = size_info
|
| 399 |
+
|
| 400 |
+
# Calculate VRAM requirements
|
| 401 |
+
vram_requirements = calculate_vram_requirements(param_size, precision)
|
| 402 |
+
total_vram_gb = vram_requirements["total_vram_gb"]
|
| 403 |
+
|
| 404 |
+
# Find compatible GPUs
|
| 405 |
+
compatible_gpus = find_compatible_gpus(total_vram_gb)
|
| 406 |
+
|
| 407 |
+
# Calculate performance for each compatible GPU
|
| 408 |
+
gpu_performance = {}
|
| 409 |
+
for gpu in compatible_gpus:
|
| 410 |
+
gpu_performance[gpu] = estimate_performance(param_size, precision, gpu)
|
| 411 |
+
|
| 412 |
+
# Determine the largest GPU that can run the model
|
| 413 |
+
largest_compatible_gpu = compatible_gpus[-1] if compatible_gpus else None
|
| 414 |
+
|
| 415 |
+
return {
|
| 416 |
+
"model_id": model_id,
|
| 417 |
+
"parameter_size": param_size, # in billions
|
| 418 |
+
"precision": precision,
|
| 419 |
+
"vram_requirements": vram_requirements,
|
| 420 |
+
"compatible_gpus": compatible_gpus,
|
| 421 |
+
"largest_compatible_gpu": largest_compatible_gpu,
|
| 422 |
+
"gpu_performance": gpu_performance,
|
| 423 |
+
#"model_info": {
|
| 424 |
+
#"description": model_info.description,
|
| 425 |
+
#"tags": model_info.tags,
|
| 426 |
+
#"downloads": model_info.downloads,
|
| 427 |
+
#"library": getattr(model_info, "library", None)
|
| 428 |
+
#}
|
| 429 |
+
}
|