Spaces:
Runtime error
Runtime error
Pre-load models
Browse files- app.py +23 -8
- extractor/_utils.py +2 -4
- extractor/extract.py +1 -6
- summarizer/summarize.py +1 -6
app.py
CHANGED
|
@@ -3,15 +3,30 @@ from extractor import extract, FewDocumentsError
|
|
| 3 |
from summarizer import summarize
|
| 4 |
import time
|
| 5 |
import cProfile
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
download
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
# TODO: translation
|
| 13 |
|
| 14 |
def main():
|
|
|
|
| 15 |
|
| 16 |
st.title("Trabalho de Formatura - Construindo textos para a internet")
|
| 17 |
st.subheader("Lucas Antunes e Matheus Vieira")
|
|
@@ -31,7 +46,7 @@ def main():
|
|
| 31 |
start_time = time.time()
|
| 32 |
try:
|
| 33 |
with st.spinner('Extraindo textos relevantes...'):
|
| 34 |
-
text = extract(query)
|
| 35 |
except FewDocumentsError as e:
|
| 36 |
few_documents = True
|
| 37 |
st.session_state['few_documents'] = True
|
|
@@ -41,7 +56,7 @@ def main():
|
|
| 41 |
|
| 42 |
st.info(f'(Extraction) Elapsed time: {time.time() - start_time:.2f}s')
|
| 43 |
with st.spinner('Gerando resumo...'):
|
| 44 |
-
summary = summarize(text)
|
| 45 |
st.info(f'(Total) Elapsed time: {time.time() - start_time:.2f}s')
|
| 46 |
|
| 47 |
st.markdown(f'Seu resumo para "{query}":\n\n> {summary}')
|
|
@@ -52,10 +67,10 @@ def main():
|
|
| 52 |
if st.button('Prosseguir'):
|
| 53 |
start_time = time.time()
|
| 54 |
with st.spinner('Extraindo textos relevantes...'):
|
| 55 |
-
text = extract(query, extracted_documents=st.session_state['documents'])
|
| 56 |
st.info(f'(Extraction) Elapsed time: {time.time() - start_time:.2f}s')
|
| 57 |
with st.spinner('Gerando resumo...'):
|
| 58 |
-
summary = summarize(text)
|
| 59 |
st.info(f'(Total) Elapsed time: {time.time() - start_time:.2f}s')
|
| 60 |
|
| 61 |
st.markdown(f'Seu resumo para "{query}":\n\n> {summary}')
|
|
|
|
| 3 |
from summarizer import summarize
|
| 4 |
import time
|
| 5 |
import cProfile
|
| 6 |
+
from sentence_transformers import SentenceTransformer
|
| 7 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 8 |
+
import torch
|
| 9 |
|
| 10 |
+
@st.cache(allow_output_mutation=True)
|
| 11 |
+
def init():
|
| 12 |
+
# Dowload required NLTK resources
|
| 13 |
+
from nltk import download
|
| 14 |
+
download('punkt')
|
| 15 |
+
download('stopwords')
|
| 16 |
+
|
| 17 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 18 |
+
# Model for semantic searches
|
| 19 |
+
search_model = SentenceTransformer('msmarco-distilbert-base-v4', device=device)
|
| 20 |
+
# Model for abstraction
|
| 21 |
+
summ_model = AutoModelForSeq2SeqLM.from_pretrained('t5-base')
|
| 22 |
+
tokenizer = AutoTokenizer.from_pretrained('t5-base')
|
| 23 |
+
|
| 24 |
+
return search_model, summ_model, tokenizer
|
| 25 |
|
| 26 |
# TODO: translation
|
| 27 |
|
| 28 |
def main():
|
| 29 |
+
search_model, summ_model, tokenizer = init()
|
| 30 |
|
| 31 |
st.title("Trabalho de Formatura - Construindo textos para a internet")
|
| 32 |
st.subheader("Lucas Antunes e Matheus Vieira")
|
|
|
|
| 46 |
start_time = time.time()
|
| 47 |
try:
|
| 48 |
with st.spinner('Extraindo textos relevantes...'):
|
| 49 |
+
text = extract(query, search_model=search_model)
|
| 50 |
except FewDocumentsError as e:
|
| 51 |
few_documents = True
|
| 52 |
st.session_state['few_documents'] = True
|
|
|
|
| 56 |
|
| 57 |
st.info(f'(Extraction) Elapsed time: {time.time() - start_time:.2f}s')
|
| 58 |
with st.spinner('Gerando resumo...'):
|
| 59 |
+
summary = summarize(text, summ_model, tokenizer)
|
| 60 |
st.info(f'(Total) Elapsed time: {time.time() - start_time:.2f}s')
|
| 61 |
|
| 62 |
st.markdown(f'Seu resumo para "{query}":\n\n> {summary}')
|
|
|
|
| 67 |
if st.button('Prosseguir'):
|
| 68 |
start_time = time.time()
|
| 69 |
with st.spinner('Extraindo textos relevantes...'):
|
| 70 |
+
text = extract(query, search_model=search_model, extracted_documents=st.session_state['documents'])
|
| 71 |
st.info(f'(Extraction) Elapsed time: {time.time() - start_time:.2f}s')
|
| 72 |
with st.spinner('Gerando resumo...'):
|
| 73 |
+
summary = summarize(text, summ_model, tokenizer)
|
| 74 |
st.info(f'(Total) Elapsed time: {time.time() - start_time:.2f}s')
|
| 75 |
|
| 76 |
st.markdown(f'Seu resumo para "{query}":\n\n> {summary}')
|
extractor/_utils.py
CHANGED
|
@@ -4,8 +4,6 @@ import streamlit as st
|
|
| 4 |
# import inflect
|
| 5 |
import torch
|
| 6 |
|
| 7 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 8 |
-
|
| 9 |
# p = inflect.engine()
|
| 10 |
|
| 11 |
class FewDocumentsError(Exception):
|
|
@@ -90,8 +88,8 @@ def paragraph_extraction(documents, min_paragraph_size):
|
|
| 90 |
return paragraphs
|
| 91 |
|
| 92 |
def semantic_search(model, query, files, number_of_similar_files):
|
| 93 |
-
encoded_query = model.encode(query
|
| 94 |
-
encoded_files = model.encode(files
|
| 95 |
|
| 96 |
model_index = nmslib.init(method='hnsw', space='angulardist')
|
| 97 |
model_index.addDataPointBatch(encoded_files)
|
|
|
|
| 4 |
# import inflect
|
| 5 |
import torch
|
| 6 |
|
|
|
|
|
|
|
| 7 |
# p = inflect.engine()
|
| 8 |
|
| 9 |
class FewDocumentsError(Exception):
|
|
|
|
| 88 |
return paragraphs
|
| 89 |
|
| 90 |
def semantic_search(model, query, files, number_of_similar_files):
|
| 91 |
+
encoded_query = model.encode(query)
|
| 92 |
+
encoded_files = model.encode(files)
|
| 93 |
|
| 94 |
model_index = nmslib.init(method='hnsw', space='angulardist')
|
| 95 |
model_index.addDataPointBatch(encoded_files)
|
extractor/extract.py
CHANGED
|
@@ -1,4 +1,3 @@
|
|
| 1 |
-
from sentence_transformers import SentenceTransformer
|
| 2 |
from ._utils import FewDocumentsError
|
| 3 |
from ._utils import document_extraction, paragraph_extraction, semantic_search
|
| 4 |
from corpora import gen_corpus
|
|
@@ -6,9 +5,7 @@ from nltk.corpus import stopwords
|
|
| 6 |
from nltk.tokenize import word_tokenize
|
| 7 |
import string
|
| 8 |
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
def extract(query: str, n: int=3, extracted_documents: list=None) -> str:
|
| 12 |
"""Extract n paragraphs from the corpus using the given query.
|
| 13 |
|
| 14 |
Parameters:
|
|
@@ -38,8 +35,6 @@ def extract(query: str, n: int=3, extracted_documents: list=None) -> str:
|
|
| 38 |
)
|
| 39 |
|
| 40 |
# First semantc search (over documents)
|
| 41 |
-
# Model for semantic searches
|
| 42 |
-
search_model = SentenceTransformer('msmarco-distilbert-base-v4', device=device)
|
| 43 |
selected_documents, documents_distances = semantic_search(
|
| 44 |
model=search_model,
|
| 45 |
query=query,
|
|
|
|
|
|
|
| 1 |
from ._utils import FewDocumentsError
|
| 2 |
from ._utils import document_extraction, paragraph_extraction, semantic_search
|
| 3 |
from corpora import gen_corpus
|
|
|
|
| 5 |
from nltk.tokenize import word_tokenize
|
| 6 |
import string
|
| 7 |
|
| 8 |
+
def extract(query: str, search_model, n: int=3, extracted_documents: list=None) -> str:
|
|
|
|
|
|
|
| 9 |
"""Extract n paragraphs from the corpus using the given query.
|
| 10 |
|
| 11 |
Parameters:
|
|
|
|
| 35 |
)
|
| 36 |
|
| 37 |
# First semantc search (over documents)
|
|
|
|
|
|
|
| 38 |
selected_documents, documents_distances = semantic_search(
|
| 39 |
model=search_model,
|
| 40 |
query=query,
|
summarizer/summarize.py
CHANGED
|
@@ -1,14 +1,9 @@
|
|
| 1 |
-
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 2 |
|
| 3 |
-
def summarize(text: str) -> str:
|
| 4 |
"""
|
| 5 |
Generate a summary based from the given text
|
| 6 |
"""
|
| 7 |
|
| 8 |
-
# Model for abstraction
|
| 9 |
-
model = AutoModelForSeq2SeqLM.from_pretrained('t5-base')
|
| 10 |
-
tokenizer = AutoTokenizer.from_pretrained('t5-base')
|
| 11 |
-
|
| 12 |
input_tokens = tokenizer.encode(
|
| 13 |
f'summarize: {text}',
|
| 14 |
return_tensors='pt',
|
|
|
|
|
|
|
| 1 |
|
| 2 |
+
def summarize(text: str, model, tokenizer) -> str:
|
| 3 |
"""
|
| 4 |
Generate a summary based from the given text
|
| 5 |
"""
|
| 6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
input_tokens = tokenizer.encode(
|
| 8 |
f'summarize: {text}',
|
| 9 |
return_tensors='pt',
|