Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -22,3 +22,154 @@ from datasets import load_dataset
|
|
| 22 |
|
| 23 |
geo = load_dataset('jamescalam/world-cities-geo', split='train')
|
| 24 |
st.write(geo)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
geo = load_dataset('jamescalam/world-cities-geo', split='train')
|
| 24 |
st.write(geo)
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
import plotly.express as px
|
| 32 |
+
|
| 33 |
+
palette = ['#1c17ff', '#faff00', '#8cf1ff', '#000000', '#030080', '#738fab']
|
| 34 |
+
|
| 35 |
+
fig = px.scatter_3d(
|
| 36 |
+
x=geo['x'], y=geo['y'], z=geo['z'],
|
| 37 |
+
color=geo['continent'],
|
| 38 |
+
custom_data=[geo['country'], geo['city']],
|
| 39 |
+
color_discrete_sequence=palette
|
| 40 |
+
)
|
| 41 |
+
fig.update_traces(
|
| 42 |
+
hovertemplate="\n".join([
|
| 43 |
+
"city: %{customdata[1]}",
|
| 44 |
+
"country: %{customdata[0]}"
|
| 45 |
+
])
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
fig.write_html("umap-earth-3d.html", include_plotlyjs="cdn", full_html=False)
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
import numpy as np
|
| 53 |
+
|
| 54 |
+
geo_arr = np.asarray([geo['x'], geo['y'], geo['z']]).T
|
| 55 |
+
geo_arr = geo_arr / geo_arr.max()
|
| 56 |
+
|
| 57 |
+
st.markdown(geo_arr[:5])
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
import umap
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
colors = geo['continent']
|
| 64 |
+
c_map = {
|
| 65 |
+
'Africa': '#8cf1ff',
|
| 66 |
+
'Asia': '#1c17ff',
|
| 67 |
+
'Europe': '#faff00',
|
| 68 |
+
'North America': '#738fab',
|
| 69 |
+
'Oceania': '#030080',
|
| 70 |
+
'South America': '#000000'
|
| 71 |
+
}
|
| 72 |
+
for i in range(len(colors)):
|
| 73 |
+
colors[i] = c_map[colors[i]]
|
| 74 |
+
colors[:5]
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
import matplotlib.pyplot as plt
|
| 79 |
+
import seaborn as sns
|
| 80 |
+
from tqdm.auto import tqdm
|
| 81 |
+
|
| 82 |
+
fig, ax = plt.subplots(3, 3, figsize=(14, 14))
|
| 83 |
+
nns = [2, 3, 4, 5, 10, 15, 30, 50, 100]
|
| 84 |
+
i, j = 0, 0
|
| 85 |
+
for n_neighbors in tqdm(nns):
|
| 86 |
+
fit = umap.UMAP(n_neighbors=n_neighbors)
|
| 87 |
+
u = fit.fit_transform(geo_arr)
|
| 88 |
+
sns.scatterplot(x=u[:,0], y=u[:,1], c=colors, ax=ax[j, i])
|
| 89 |
+
ax[j, i].set_title(f'n={n_neighbors}')
|
| 90 |
+
if i < 2: i += 1
|
| 91 |
+
else: i = 0; j += 1
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
target = geo['continent']
|
| 95 |
+
t_map = {
|
| 96 |
+
'Africa': 0,
|
| 97 |
+
'Asia': 1,
|
| 98 |
+
'Europe': 2,
|
| 99 |
+
'North America': 3,
|
| 100 |
+
'Oceania': 4,
|
| 101 |
+
'South America': 5
|
| 102 |
+
}
|
| 103 |
+
for i in range(len(target)):
|
| 104 |
+
target[i] = t_map[target[i]]
|
| 105 |
+
|
| 106 |
+
fig, ax = plt.subplots(3, 3, figsize=(14, 14))
|
| 107 |
+
nns = [2, 3, 4, 5, 10, 15, 30, 50, 100]
|
| 108 |
+
i, j = 0, 0
|
| 109 |
+
for n_neighbors in tqdm(nns):
|
| 110 |
+
fit = umap.UMAP(n_neighbors=n_neighbors)
|
| 111 |
+
u = fit.fit_transform(geo_arr, y=target)
|
| 112 |
+
sns.scatterplot(x=u[:,0], y=u[:,1], c=colors, ax=ax[j, i])
|
| 113 |
+
ax[j, i].set_title(f'n={n_neighbors}')
|
| 114 |
+
if i < 2: i += 1
|
| 115 |
+
else: i = 0; j += 1
|
| 116 |
+
|
| 117 |
+
import umap
|
| 118 |
+
|
| 119 |
+
fit = umap.UMAP(n_neighbors=50, min_dist=0.5)
|
| 120 |
+
u = fit.fit_transform(geo_arr)
|
| 121 |
+
|
| 122 |
+
fig = px.scatter(
|
| 123 |
+
x=u[:,0], y=u[:,1],
|
| 124 |
+
color=geo['continent'],
|
| 125 |
+
custom_data=[geo['country'], geo['city']],
|
| 126 |
+
color_discrete_sequence=palette
|
| 127 |
+
)
|
| 128 |
+
fig.update_traces(
|
| 129 |
+
hovertemplate="\n".join([
|
| 130 |
+
"city: %{customdata[1]}",
|
| 131 |
+
"country: %{customdata[0]}"
|
| 132 |
+
])
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
fig.write_html("umap-earth-2d.html", include_plotlyjs="cdn", full_html=False)
|
| 136 |
+
|
| 137 |
+
import pandas as pd
|
| 138 |
+
|
| 139 |
+
umapped = pd.DataFrame({
|
| 140 |
+
'x': u[:,0],
|
| 141 |
+
'y': u[:,1],
|
| 142 |
+
'continent': geo['continent'],
|
| 143 |
+
'country': geo['country'],
|
| 144 |
+
'city': geo['city']
|
| 145 |
+
})
|
| 146 |
+
|
| 147 |
+
umapped.to_csv('umapped.csv', sep='|', index=False)
|
| 148 |
+
|
| 149 |
+
from sklearn.decomposition import PCA
|
| 150 |
+
|
| 151 |
+
pca = PCA(n_components=2) # this means we will create 2-d space
|
| 152 |
+
p = pca.fit_transform(geo_arr)
|
| 153 |
+
fig = px.scatter(
|
| 154 |
+
x=p[:,0], y=p[:,1],
|
| 155 |
+
color=geo['continent'],
|
| 156 |
+
custom_data=[geo['country'], geo['city']],
|
| 157 |
+
color_discrete_sequence=palette
|
| 158 |
+
)
|
| 159 |
+
fig.update_traces(
|
| 160 |
+
hovertemplate="\n".join([
|
| 161 |
+
"city: %{customdata[1]}",
|
| 162 |
+
"country: %{customdata[0]}"
|
| 163 |
+
])
|
| 164 |
+
)
|
| 165 |
+
|
| 166 |
+
fig.write_html("pca-earth-2d.html", include_plotlyjs="cdn", full_html=False)
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
|