Spaces:
Build error
Build error
| def query_pinecone_sparse( | |
| dense_vec, | |
| sparse_vec, | |
| top_k, | |
| index, | |
| year, | |
| quarter, | |
| ticker, | |
| participant_type, | |
| threshold=0.25, | |
| ): | |
| if participant_type == "Company Speaker": | |
| participant = "Answer" | |
| else: | |
| participant = "Question" | |
| if year == "All": | |
| if quarter == "All": | |
| xc = index.query( | |
| vector=dense_vec, | |
| sparse_vector=sparse_vec, | |
| top_k=top_k, | |
| filter={ | |
| "Year": { | |
| "$in": [ | |
| int("2020"), | |
| int("2019"), | |
| int("2018"), | |
| int("2017"), | |
| int("2016"), | |
| ] | |
| }, | |
| "Quarter": {"$in": ["Q1", "Q2", "Q3", "Q4"]}, | |
| "Ticker": {"$eq": ticker}, | |
| "QA_Flag": {"$eq": participant}, | |
| }, | |
| include_metadata=True, | |
| ) | |
| else: | |
| xc = index.query( | |
| vector=dense_vec, | |
| sparse_vector=sparse_vec, | |
| top_k=top_k, | |
| filter={ | |
| "Year": { | |
| "$in": [ | |
| int("2020"), | |
| int("2019"), | |
| int("2018"), | |
| int("2017"), | |
| int("2016"), | |
| ] | |
| }, | |
| "Quarter": {"$eq": quarter}, | |
| "Ticker": {"$eq": ticker}, | |
| "QA_Flag": {"$eq": participant}, | |
| }, | |
| include_metadata=True, | |
| ) | |
| else: | |
| # search pinecone index for context passage with the answer | |
| xc = index.query( | |
| vector=dense_vec, | |
| sparse_vector=sparse_vec, | |
| top_k=top_k, | |
| filter={ | |
| "Year": int(year), | |
| "Quarter": {"$eq": quarter}, | |
| "Ticker": {"$eq": ticker}, | |
| "QA_Flag": {"$eq": participant}, | |
| }, | |
| include_metadata=True, | |
| ) | |
| # filter the context passages based on the score threshold | |
| filtered_matches = [] | |
| for match in xc["matches"]: | |
| if match["score"] >= threshold: | |
| filtered_matches.append(match) | |
| xc["matches"] = filtered_matches | |
| return xc | |
| def query_pinecone( | |
| dense_vec, | |
| top_k, | |
| index, | |
| year, | |
| quarter, | |
| ticker, | |
| participant_type, | |
| threshold=0.25, | |
| ): | |
| if participant_type == "Company Speaker": | |
| participant = "Answer" | |
| else: | |
| participant = "Question" | |
| if year == "All": | |
| if quarter == "All": | |
| xc = index.query( | |
| vector=dense_vec, | |
| top_k=top_k, | |
| filter={ | |
| "Year": { | |
| "$in": [ | |
| int("2020"), | |
| int("2019"), | |
| int("2018"), | |
| int("2017"), | |
| int("2016"), | |
| ] | |
| }, | |
| "Quarter": {"$in": ["Q1", "Q2", "Q3", "Q4"]}, | |
| "Ticker": {"$eq": ticker}, | |
| "QA_Flag": {"$eq": participant}, | |
| }, | |
| include_metadata=True, | |
| ) | |
| else: | |
| xc = index.query( | |
| vector=dense_vec, | |
| top_k=top_k, | |
| filter={ | |
| "Year": { | |
| "$in": [ | |
| int("2020"), | |
| int("2019"), | |
| int("2018"), | |
| int("2017"), | |
| int("2016"), | |
| ] | |
| }, | |
| "Quarter": {"$eq": quarter}, | |
| "Ticker": {"$eq": ticker}, | |
| "QA_Flag": {"$eq": participant}, | |
| }, | |
| include_metadata=True, | |
| ) | |
| else: | |
| # search pinecone index for context passage with the answer | |
| xc = index.query( | |
| vector=dense_vec, | |
| top_k=top_k, | |
| filter={ | |
| "Year": int(year), | |
| "Quarter": {"$eq": quarter}, | |
| "Ticker": {"$eq": ticker}, | |
| "QA_Flag": {"$eq": participant}, | |
| }, | |
| include_metadata=True, | |
| ) | |
| # filter the context passages based on the score threshold | |
| filtered_matches = [] | |
| for match in xc["matches"]: | |
| if match["score"] >= threshold: | |
| filtered_matches.append(match) | |
| xc["matches"] = filtered_matches | |
| return xc | |
| def format_query(query_results): | |
| # extract passage_text from Pinecone search result | |
| context = [ | |
| result["metadata"]["Text"] for result in query_results["matches"] | |
| ] | |
| return context | |
| def sentence_id_combine(data, query_results, lag=1): | |
| # Extract sentence IDs from query results | |
| ids = [ | |
| result["metadata"]["Sentence_id"] | |
| for result in query_results["matches"] | |
| ] | |
| # Generate new IDs by adding a lag value to the original IDs | |
| new_ids = [id + i for id in ids for i in range(-lag, lag + 1)] | |
| # Remove duplicates and sort the new IDs | |
| new_ids = sorted(set(new_ids)) | |
| # Create a list of lookup IDs by grouping the new IDs in groups of lag*2+1 | |
| lookup_ids = [ | |
| new_ids[i : i + (lag * 2 + 1)] | |
| for i in range(0, len(new_ids), lag * 2 + 1) | |
| ] | |
| # Create a list of context sentences by joining the sentences | |
| # corresponding to the lookup IDs | |
| context_list = [ | |
| " ".join( | |
| data.loc[data["Sentence_id"].isin(lookup_id), "Text"].to_list() | |
| ) | |
| for lookup_id in lookup_ids | |
| ] | |
| return context_list | |
| def text_lookup(data, sentence_ids): | |
| context = ". ".join(data.iloc[sentence_ids].to_list()) | |
| return context | |
| def year_quarter_range(start_quarter, start_year, end_quarter, end_year): | |
| """Creates a list of all (year, quarter) pairs that lie in the range including the start and end quarters.""" | |
| start_year = int(start_year) | |
| end_year = int(end_year) | |
| quarters = ( | |
| [("Q1", "Q2", "Q3", "Q4")] * (end_year - start_year) | |
| + [("Q1", "Q2", "Q3" if end_quarter == "Q4" else "Q4")] | |
| * (end_quarter == "Q4") | |
| + [ | |
| ( | |
| "Q1" | |
| if start_quarter == "Q1" | |
| else "Q2" | |
| if start_quarter == "Q2" | |
| else "Q3" | |
| if start_quarter == "Q3" | |
| else "Q4", | |
| ) | |
| * (end_year - start_year) | |
| ] | |
| ) | |
| years = list(range(start_year, end_year + 1)) | |
| list_year_quarter = [ | |
| (y, q) for y in years for q in quarters[years.index(y)] | |
| ] | |
| # Remove duplicate pairs | |
| seen = set() | |
| list_year_quarter_cleaned = [] | |
| for tup in list_year_quarter: | |
| if tup not in seen: | |
| seen.add(tup) | |
| list_year_quarter_cleaned.append(tup) | |
| return list_year_quarter_cleaned | |
| def multi_document_query( | |
| dense_query_embedding, | |
| sparse_query_embedding, | |
| num_results, | |
| pinecone_index, | |
| start_quarter, | |
| start_year, | |
| end_quarter, | |
| end_year, | |
| ticker, | |
| participant_type, | |
| threshold, | |
| ): | |
| pass | |