Adds lr moitor to train
Browse files
train.py
CHANGED
|
@@ -13,12 +13,12 @@ torch.set_float32_matmul_precision("high")
|
|
| 13 |
|
| 14 |
|
| 15 |
# Init DataModule
|
| 16 |
-
dm = DRDataModule(batch_size=
|
| 17 |
dm.setup()
|
| 18 |
|
| 19 |
# Init model from datamodule's attributes
|
| 20 |
model = DRModel(
|
| 21 |
-
num_classes=dm.num_classes, learning_rate=3e-
|
| 22 |
)
|
| 23 |
|
| 24 |
# Init logger
|
|
@@ -32,14 +32,17 @@ checkpoint_callback = ModelCheckpoint(
|
|
| 32 |
dirpath="checkpoints",
|
| 33 |
)
|
| 34 |
|
|
|
|
|
|
|
|
|
|
| 35 |
# Init trainer
|
| 36 |
trainer = L.Trainer(
|
| 37 |
max_epochs=20,
|
| 38 |
accelerator="auto",
|
| 39 |
devices="auto",
|
| 40 |
logger=logger,
|
| 41 |
-
callbacks=[checkpoint_callback],
|
| 42 |
-
enable_checkpointing=True
|
| 43 |
)
|
| 44 |
|
| 45 |
# Pass the datamodule as arg to trainer.fit to override model hooks :)
|
|
|
|
| 13 |
|
| 14 |
|
| 15 |
# Init DataModule
|
| 16 |
+
dm = DRDataModule(batch_size=96, num_workers=8)
|
| 17 |
dm.setup()
|
| 18 |
|
| 19 |
# Init model from datamodule's attributes
|
| 20 |
model = DRModel(
|
| 21 |
+
num_classes=dm.num_classes, learning_rate=3e-5, class_weights=dm.class_weights
|
| 22 |
)
|
| 23 |
|
| 24 |
# Init logger
|
|
|
|
| 32 |
dirpath="checkpoints",
|
| 33 |
)
|
| 34 |
|
| 35 |
+
# Init LearningRateMonitor
|
| 36 |
+
lr_monitor = LearningRateMonitor(logging_interval="step")
|
| 37 |
+
|
| 38 |
# Init trainer
|
| 39 |
trainer = L.Trainer(
|
| 40 |
max_epochs=20,
|
| 41 |
accelerator="auto",
|
| 42 |
devices="auto",
|
| 43 |
logger=logger,
|
| 44 |
+
callbacks=[checkpoint_callback, lr_monitor],
|
| 45 |
+
enable_checkpointing=True,
|
| 46 |
)
|
| 47 |
|
| 48 |
# Pass the datamodule as arg to trainer.fit to override model hooks :)
|