Add training script with data module setup, model initialization, logger, callbacks, and trainer configuration
Browse files- src/__init__.py +0 -0
- train.py +46 -0
src/__init__.py
ADDED
|
File without changes
|
train.py
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import lightning as L
|
| 2 |
+
import torch
|
| 3 |
+
from lightning.pytorch.callbacks import ModelCheckpoint, LearningRateMonitor
|
| 4 |
+
from lightning.pytorch.loggers import TensorBoardLogger
|
| 5 |
+
|
| 6 |
+
from src.dataset import DRDataModule
|
| 7 |
+
from src.model import DRModel
|
| 8 |
+
|
| 9 |
+
# seed everything for reproducibility
|
| 10 |
+
SEED = 42
|
| 11 |
+
L.seed_everything(SEED, workers=True)
|
| 12 |
+
torch.set_float32_matmul_precision("high")
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
# Init DataModule
|
| 16 |
+
dm = DRDataModule(batch_size=128, num_workers=8)
|
| 17 |
+
dm.setup()
|
| 18 |
+
|
| 19 |
+
# Init model from datamodule's attributes
|
| 20 |
+
model = DRModel(
|
| 21 |
+
num_classes=dm.num_classes, learning_rate=3e-4, class_weights=dm.class_weights
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
# Init logger
|
| 25 |
+
logger = TensorBoardLogger("lightning_logs", name="dr_model")
|
| 26 |
+
|
| 27 |
+
# Init callbacks
|
| 28 |
+
checkpoint_callback = ModelCheckpoint(
|
| 29 |
+
monitor="val_loss",
|
| 30 |
+
mode="min",
|
| 31 |
+
save_top_k=3,
|
| 32 |
+
dirpath="checkpoints",
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
# Init trainer
|
| 36 |
+
trainer = L.Trainer(
|
| 37 |
+
max_epochs=20,
|
| 38 |
+
accelerator="auto",
|
| 39 |
+
devices="auto",
|
| 40 |
+
logger=logger,
|
| 41 |
+
callbacks=[checkpoint_callback],
|
| 42 |
+
enable_checkpointing=True
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
# Pass the datamodule as arg to trainer.fit to override model hooks :)
|
| 46 |
+
trainer.fit(model, dm)
|