Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| import torch | |
| import os # For Hugging Face token | |
| # Import spaces for ZeroGPU if you need to decorate specific functions | |
| # For models loaded via transformers and run on a device managed by ZeroGPU, | |
| # explicit @spaces.GPU might not always be needed directly on the inference function | |
| # if the entire space is on ZeroGPU hardware. However, for clarity or complex setups: | |
| # import spaces # Uncomment if using @spaces.GPU decorator | |
| # --- Configuration --- | |
| HF_TOKEN = os.getenv("HF_TOKEN") # Recommended to store your Hugging Face token as a Space secret | |
| MODEL_OPTIONS = { | |
| "Qwen1.5-1.8B-Chat": "Qwen/Qwen1.5-1.8B-Chat", | |
| "Qwen2.5-Coder-3B": "Qwen/Qwen2.5-Coder-3B", # Example for a Qwen code model around 3B params | |
| } | |
| # --- Model Loading Cache --- | |
| # This dictionary will cache loaded models and tokenizers to avoid reloading on every call | |
| loaded_models = {} | |
| def get_model_and_tokenizer(model_name_key): | |
| if model_name_key not in loaded_models: | |
| model_id = MODEL_OPTIONS[model_name_key] | |
| print(f"Loading model: {model_id}...") | |
| try: | |
| # Ensure you have accepted the terms of use for these models on Hugging Face Hub | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_id, | |
| torch_dtype="auto", # Let transformers decide the best dtype | |
| device_map="auto", # Automatically maps model to available device (GPU on ZeroGPU) | |
| token=HF_TOKEN # Use token if model is private or requires it | |
| ) | |
| tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN) | |
| loaded_models[model_name_key] = (model, tokenizer) | |
| print(f"Model {model_id} loaded successfully.") | |
| except Exception as e: | |
| print(f"Error loading model {model_id}: {e}") | |
| # Fallback or error handling | |
| if model_name_key in loaded_models: # Remove if partially loaded | |
| del loaded_models[model_name_key] | |
| raise gr.Error(f"Failed to load model {model_name_key}. Please check the model ID and your Hugging Face token permissions. Error: {e}") | |
| return loaded_models[model_name_key] | |
| # --- Inference Function --- | |
| # If you need finer-grained control over GPU allocation for specific parts: | |
| # @spaces.GPU(duration=120) # Example: Request GPU for 120 seconds for this function | |
| def generate_response(prompt_text, model_choice, max_new_tokens=512, temperature=0.7, top_p=0.9): | |
| if not prompt_text: | |
| return "Please enter a prompt." | |
| if not model_choice: | |
| return "Please select a model." | |
| try: | |
| model, tokenizer = get_model_and_tokenizer(model_choice) | |
| except Exception as e: | |
| return str(e) # Display loading error to user | |
| device = model.device # Get the device the model is on | |
| if "Chat" in model_choice: # Apply chat template for chat models | |
| messages = [ | |
| {"role": "system", "content": "You are a helpful assistant."}, | |
| {"role": "user", "content": prompt_text} | |
| ] | |
| try: | |
| input_text = tokenizer.apply_chat_template( | |
| messages, | |
| tokenize=False, | |
| add_generation_prompt=True | |
| ) | |
| except Exception as e: # Fallback if apply_chat_template has issues or is not applicable | |
| print(f"Warning: Could not apply chat template for {model_choice}: {e}. Using prompt as is.") | |
| input_text = prompt_text | |
| else: # For code or non-chat models, use the prompt directly or adjust as needed | |
| input_text = prompt_text | |
| model_inputs = tokenizer([input_text], return_tensors="pt").to(device) | |
| try: | |
| generated_ids = model.generate( | |
| model_inputs.input_ids, | |
| max_new_tokens=max_new_tokens, | |
| temperature=temperature, | |
| top_p=top_p, | |
| do_sample=True # Necessary for temperature and top_p to have an effect | |
| ) | |
| # For some models, the input prompt is included in the generated_ids. | |
| # We need to decode only the newly generated tokens. | |
| # This slicing can vary based on the model and tokenizer. | |
| # A common approach is to slice based on the input_ids length: | |
| response_ids = generated_ids[0][model_inputs.input_ids.shape[-1]:] | |
| response_text = tokenizer.decode(response_ids, skip_special_tokens=True) | |
| except Exception as e: | |
| print(f"Error during generation with {model_choice}: {e}") | |
| return f"Error generating response: {e}" | |
| return response_text | |
| # --- Gradio Interface --- | |
| with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
| gr.Markdown("# LLM Coding & Math Experiment") | |
| gr.Markdown("Query Qwen1.5-1.8B-Chat or Qwen Code models using ZeroGPU.") | |
| with gr.Row(): | |
| model_dropdown = gr.Dropdown( | |
| label="Select Model", | |
| choices=list(MODEL_OPTIONS.keys()), | |
| value=list(MODEL_OPTIONS.keys())[0] # Default to the first model | |
| ) | |
| with gr.Row(): | |
| prompt_input = gr.Textbox(label="Enter your prompt:", lines=4, placeholder="e.g., Write a Python function to calculate factorial, or What is the capital of France?") | |
| with gr.Row(): | |
| output_text = gr.Textbox(label="Model Response:", lines=8, interactive=False) | |
| with gr.Row(): | |
| submit_button = gr.Button("Generate Response", variant="primary") | |
| with gr.Accordion("Advanced Settings", open=False): | |
| max_new_tokens_slider = gr.Slider(minimum=32, maximum=2048, value=512, step=32, label="Max New Tokens") | |
| temperature_slider = gr.Slider(minimum=0.1, maximum=1.5, value=0.7, step=0.05, label="Temperature") | |
| top_p_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-P") | |
| # Event listener for the button | |
| submit_button.click( | |
| fn=generate_response, | |
| inputs=[prompt_input, model_dropdown, max_new_tokens_slider, temperature_slider, top_p_slider], | |
| outputs=output_text, | |
| api_name="generate" # Exposes an API endpoint | |
| ) | |
| gr.Markdown("## Notes:") | |
| gr.Markdown( | |
| "- Ensure you have accepted the terms of use for the selected Qwen models on the Hugging Face Hub.\n" | |
| "- Model loading can take some time, especially on the first run or when switching models.\n" | |
| "- This Space runs on ZeroGPU, which means GPU resources are allocated dynamically." | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |