Bobo_1st_space / app.py
bobotheparrot's picture
Update app.py
8e5c202 verified
raw
history blame
6.49 kB
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import os # For Hugging Face token
# Import spaces for ZeroGPU if you need to decorate specific functions
# For models loaded via transformers and run on a device managed by ZeroGPU,
# explicit @spaces.GPU might not always be needed directly on the inference function
# if the entire space is on ZeroGPU hardware. However, for clarity or complex setups:
# import spaces # Uncomment if using @spaces.GPU decorator
# --- Configuration ---
HF_TOKEN = os.getenv("HF_TOKEN") # Recommended to store your Hugging Face token as a Space secret
MODEL_OPTIONS = {
"Qwen1.5-1.8B-Chat": "Qwen/Qwen1.5-1.8B-Chat",
"Qwen2.5-Coder-3B": "Qwen/Qwen2.5-Coder-3B", # Example for a Qwen code model around 3B params
}
# --- Model Loading Cache ---
# This dictionary will cache loaded models and tokenizers to avoid reloading on every call
loaded_models = {}
def get_model_and_tokenizer(model_name_key):
if model_name_key not in loaded_models:
model_id = MODEL_OPTIONS[model_name_key]
print(f"Loading model: {model_id}...")
try:
# Ensure you have accepted the terms of use for these models on Hugging Face Hub
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype="auto", # Let transformers decide the best dtype
device_map="auto", # Automatically maps model to available device (GPU on ZeroGPU)
token=HF_TOKEN # Use token if model is private or requires it
)
tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN)
loaded_models[model_name_key] = (model, tokenizer)
print(f"Model {model_id} loaded successfully.")
except Exception as e:
print(f"Error loading model {model_id}: {e}")
# Fallback or error handling
if model_name_key in loaded_models: # Remove if partially loaded
del loaded_models[model_name_key]
raise gr.Error(f"Failed to load model {model_name_key}. Please check the model ID and your Hugging Face token permissions. Error: {e}")
return loaded_models[model_name_key]
# --- Inference Function ---
# If you need finer-grained control over GPU allocation for specific parts:
# @spaces.GPU(duration=120) # Example: Request GPU for 120 seconds for this function
def generate_response(prompt_text, model_choice, max_new_tokens=512, temperature=0.7, top_p=0.9):
if not prompt_text:
return "Please enter a prompt."
if not model_choice:
return "Please select a model."
try:
model, tokenizer = get_model_and_tokenizer(model_choice)
except Exception as e:
return str(e) # Display loading error to user
device = model.device # Get the device the model is on
if "Chat" in model_choice: # Apply chat template for chat models
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt_text}
]
try:
input_text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
except Exception as e: # Fallback if apply_chat_template has issues or is not applicable
print(f"Warning: Could not apply chat template for {model_choice}: {e}. Using prompt as is.")
input_text = prompt_text
else: # For code or non-chat models, use the prompt directly or adjust as needed
input_text = prompt_text
model_inputs = tokenizer([input_text], return_tensors="pt").to(device)
try:
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=max_new_tokens,
temperature=temperature,
top_p=top_p,
do_sample=True # Necessary for temperature and top_p to have an effect
)
# For some models, the input prompt is included in the generated_ids.
# We need to decode only the newly generated tokens.
# This slicing can vary based on the model and tokenizer.
# A common approach is to slice based on the input_ids length:
response_ids = generated_ids[0][model_inputs.input_ids.shape[-1]:]
response_text = tokenizer.decode(response_ids, skip_special_tokens=True)
except Exception as e:
print(f"Error during generation with {model_choice}: {e}")
return f"Error generating response: {e}"
return response_text
# --- Gradio Interface ---
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# LLM Coding & Math Experiment")
gr.Markdown("Query Qwen1.5-1.8B-Chat or Qwen Code models using ZeroGPU.")
with gr.Row():
model_dropdown = gr.Dropdown(
label="Select Model",
choices=list(MODEL_OPTIONS.keys()),
value=list(MODEL_OPTIONS.keys())[0] # Default to the first model
)
with gr.Row():
prompt_input = gr.Textbox(label="Enter your prompt:", lines=4, placeholder="e.g., Write a Python function to calculate factorial, or What is the capital of France?")
with gr.Row():
output_text = gr.Textbox(label="Model Response:", lines=8, interactive=False)
with gr.Row():
submit_button = gr.Button("Generate Response", variant="primary")
with gr.Accordion("Advanced Settings", open=False):
max_new_tokens_slider = gr.Slider(minimum=32, maximum=2048, value=512, step=32, label="Max New Tokens")
temperature_slider = gr.Slider(minimum=0.1, maximum=1.5, value=0.7, step=0.05, label="Temperature")
top_p_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-P")
# Event listener for the button
submit_button.click(
fn=generate_response,
inputs=[prompt_input, model_dropdown, max_new_tokens_slider, temperature_slider, top_p_slider],
outputs=output_text,
api_name="generate" # Exposes an API endpoint
)
gr.Markdown("## Notes:")
gr.Markdown(
"- Ensure you have accepted the terms of use for the selected Qwen models on the Hugging Face Hub.\n"
"- Model loading can take some time, especially on the first run or when switching models.\n"
"- This Space runs on ZeroGPU, which means GPU resources are allocated dynamically."
)
if __name__ == "__main__":
demo.launch()