Commit
·
b0bb178
1
Parent(s):
70d09b9
zonal stats + splitting geometry scripts
Browse files- .gitignore +5 -0
- preprocess/split_data/combine.py +66 -0
- preprocess/split_data/combine_habitat_climate.ipynb +84 -0
- preprocess/split_data/split.py +175 -0
- preprocess/split_data/split_geoms.ipynb +74 -0
- preprocess/zonal_stats/join_zonals.ipynb +168 -0
- preprocess/zonal_stats/raster_stats.ipynb +91 -0
- preprocess/zonal_stats/raster_utils.py +75 -0
- preprocess/zonal_stats/vector_stats.ipynb +94 -0
- preprocess/zonal_stats/vector_utils.py +192 -0
.gitignore
CHANGED
|
@@ -196,3 +196,8 @@ k8s/secret-deployment.yaml
|
|
| 196 |
duck.db
|
| 197 |
query_log.csv
|
| 198 |
**/*.zip
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 196 |
duck.db
|
| 197 |
query_log.csv
|
| 198 |
**/*.zip
|
| 199 |
+
**/*.shp..xml
|
| 200 |
+
**/*.TablesByName..atx
|
| 201 |
+
**/*.shp..xml
|
| 202 |
+
**/*.gpkg
|
| 203 |
+
**/*.lyrx
|
preprocess/split_data/combine.py
ADDED
|
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import ibis
|
| 2 |
+
from ibis import _
|
| 3 |
+
import ibis.expr.datatypes as dt
|
| 4 |
+
|
| 5 |
+
@ibis.udf.scalar.builtin
|
| 6 |
+
def ST_IsEmpty(geom: dt.geometry) -> dt.boolean:
|
| 7 |
+
return f"ST_IsEmpty({geom})"
|
| 8 |
+
|
| 9 |
+
def combine_habitat_and_climate(data1_url, data2_url, con):
|
| 10 |
+
|
| 11 |
+
SQM_PER_ACRE = 4046.8564224
|
| 12 |
+
t1 = con.read_parquet(data1_url).select(_.habitat_type, _.geom)
|
| 13 |
+
t2 = con.read_parquet(data2_url).select(_.climate_zone, _.geom)
|
| 14 |
+
|
| 15 |
+
# intersection areas: where habitat and climate overlap
|
| 16 |
+
intersected = (
|
| 17 |
+
t1.inner_join(t2, t1.geom.intersects(t2.geom))
|
| 18 |
+
.select(
|
| 19 |
+
habitat_type=t1.habitat_type,
|
| 20 |
+
climate_zone=t2.climate_zone,
|
| 21 |
+
geom=t1.geom.intersection(t2.geom).name("geom")
|
| 22 |
+
)
|
| 23 |
+
.filter(_.geom.is_valid())
|
| 24 |
+
.mutate(acres=( _.geom.area() / SQM_PER_ACRE ).round(4))
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
+
# habitat only: subtract all overlapping climate from each habitat polygon
|
| 28 |
+
overlapping_climate = (
|
| 29 |
+
t1.cross_join(t2)
|
| 30 |
+
.filter(t1.geom.intersects(t2.geom))
|
| 31 |
+
.select(t2.geom)
|
| 32 |
+
.aggregate(union_geom=_.geom.unary_union())
|
| 33 |
+
)
|
| 34 |
+
habitat_with_union = t1.cross_join(overlapping_climate)
|
| 35 |
+
habitat_only = (
|
| 36 |
+
habitat_with_union.select(
|
| 37 |
+
habitat_type=_.habitat_type,
|
| 38 |
+
climate_zone=ibis.literal("None").name("climate_zone"),
|
| 39 |
+
geom=_.geom.difference(_.union_geom).name("geom")
|
| 40 |
+
)
|
| 41 |
+
.filter(_.geom.is_valid())
|
| 42 |
+
.mutate(acres=( _.geom.area() / SQM_PER_ACRE ).round(4))
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
# climate only: subtract all overlapping habitat from each climate polygon
|
| 46 |
+
overlapping_habitat = (
|
| 47 |
+
t2.cross_join(t1)
|
| 48 |
+
.filter(t2.geom.intersects(t1.geom))
|
| 49 |
+
.select(t1.geom)
|
| 50 |
+
.aggregate(union_geom=_.geom.unary_union())
|
| 51 |
+
)
|
| 52 |
+
climate_with_union = t2.cross_join(overlapping_habitat)
|
| 53 |
+
climate_only = (
|
| 54 |
+
climate_with_union.select(
|
| 55 |
+
habitat_type=ibis.literal("None").name("habitat_type"),
|
| 56 |
+
climate_zone=_.climate_zone,
|
| 57 |
+
geom=_.geom.difference(_.union_geom).name("geom")
|
| 58 |
+
)
|
| 59 |
+
.filter(_.geom.is_valid())
|
| 60 |
+
.mutate(acres=( _.geom.area() / SQM_PER_ACRE ).round(4))
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
# combine
|
| 64 |
+
result = intersected.union(habitat_only).union(climate_only)
|
| 65 |
+
# result = result.filter(~ST_IsEmpty(_.geom))
|
| 66 |
+
return result
|
preprocess/split_data/combine_habitat_climate.ipynb
ADDED
|
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"id": "8b314df6-c4b9-4be5-9a34-2ab5236f072b",
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"source": [
|
| 8 |
+
"# Combine habitat types and climate zones\n",
|
| 9 |
+
"To split the protected areas into habitat types and climate zones, it's best to dissolve the habitat type/climate zone geometries into a single dataset, and then intersect on protected areas. \n",
|
| 10 |
+
"\n",
|
| 11 |
+
"To do so, we combine the data to get distinct geometries for each habitat type + climate zone combonation. "
|
| 12 |
+
]
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"cell_type": "code",
|
| 16 |
+
"execution_count": null,
|
| 17 |
+
"id": "baa63640-33a7-4b99-a4aa-46125beb5976",
|
| 18 |
+
"metadata": {
|
| 19 |
+
"editable": true,
|
| 20 |
+
"slideshow": {
|
| 21 |
+
"slide_type": ""
|
| 22 |
+
},
|
| 23 |
+
"tags": []
|
| 24 |
+
},
|
| 25 |
+
"outputs": [],
|
| 26 |
+
"source": [
|
| 27 |
+
"from combine import * \n",
|
| 28 |
+
"import os\n",
|
| 29 |
+
"import sys\n",
|
| 30 |
+
"base_dir = os.path.abspath(os.path.join(os.getcwd(), '..'))\n",
|
| 31 |
+
"if base_dir not in sys.path:\n",
|
| 32 |
+
" sys.path.insert(0, base_dir)\n",
|
| 33 |
+
" \n",
|
| 34 |
+
"from minio_utils import * \n",
|
| 35 |
+
"con, _ = connect_minio()"
|
| 36 |
+
]
|
| 37 |
+
},
|
| 38 |
+
{
|
| 39 |
+
"cell_type": "code",
|
| 40 |
+
"execution_count": null,
|
| 41 |
+
"id": "5000eb46-1e51-49e3-bd2d-3230e829628f",
|
| 42 |
+
"metadata": {
|
| 43 |
+
"editable": true,
|
| 44 |
+
"slideshow": {
|
| 45 |
+
"slide_type": ""
|
| 46 |
+
},
|
| 47 |
+
"tags": []
|
| 48 |
+
},
|
| 49 |
+
"outputs": [],
|
| 50 |
+
"source": [
|
| 51 |
+
"%%time \n",
|
| 52 |
+
"#Wall time: 3h 48min 41s\n",
|
| 53 |
+
"# prior to running, I simplified each vector by 10 meters. \n",
|
| 54 |
+
"data1_url = 's3://public-ca30x30/CBN/Habitat/dissolved_geoms/CWHR13_dissolved_geoms_simplify10m.parquet'\n",
|
| 55 |
+
"data2_url = 's3://public-ca30x30/CBN/Climate_zones/dissolved_geoms/Climate_zones_dissolved_geoms_simplify10m.parquet'\n",
|
| 56 |
+
"result = combine_habitat_and_climate(data1_url, data2_url, con)\n",
|
| 57 |
+
"\n",
|
| 58 |
+
"new_url = 's3://public-ca30x30/CBN/Habitat/dissolved_geoms/CWHR13_climate_dissolved_geoms_simplify10m.parquet'\n",
|
| 59 |
+
"result.to_parquet(new_url)"
|
| 60 |
+
]
|
| 61 |
+
}
|
| 62 |
+
],
|
| 63 |
+
"metadata": {
|
| 64 |
+
"kernelspec": {
|
| 65 |
+
"display_name": "Python 3 (ipykernel)",
|
| 66 |
+
"language": "python",
|
| 67 |
+
"name": "python3"
|
| 68 |
+
},
|
| 69 |
+
"language_info": {
|
| 70 |
+
"codemirror_mode": {
|
| 71 |
+
"name": "ipython",
|
| 72 |
+
"version": 3
|
| 73 |
+
},
|
| 74 |
+
"file_extension": ".py",
|
| 75 |
+
"mimetype": "text/x-python",
|
| 76 |
+
"name": "python",
|
| 77 |
+
"nbconvert_exporter": "python",
|
| 78 |
+
"pygments_lexer": "ipython3",
|
| 79 |
+
"version": "3.12.10"
|
| 80 |
+
}
|
| 81 |
+
},
|
| 82 |
+
"nbformat": 4,
|
| 83 |
+
"nbformat_minor": 5
|
| 84 |
+
}
|
preprocess/split_data/split.py
ADDED
|
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import ibis
|
| 2 |
+
from ibis import _
|
| 3 |
+
|
| 4 |
+
def get_ecoregion(index):
|
| 5 |
+
ecoregions = ['Central_California_Coast',
|
| 6 |
+
'Central_Valley_Coast_Ranges',
|
| 7 |
+
'Colorado_Desert',
|
| 8 |
+
'Great_Valley_North',
|
| 9 |
+
'Great_Valley_South',
|
| 10 |
+
'Klamath_Mountains',
|
| 11 |
+
'Modoc_Plateau',
|
| 12 |
+
'Mojave_Desert',
|
| 13 |
+
'Mono',
|
| 14 |
+
'Northern_California_Coast',
|
| 15 |
+
'Northern_California_Coast_Ranges',
|
| 16 |
+
'Northern_California_Interior_Coast_Ranges',
|
| 17 |
+
'Northwestern_Basin_and_Range',
|
| 18 |
+
'Sierra_Nevada',
|
| 19 |
+
'Sierra_Nevada_Foothills',
|
| 20 |
+
'Sonoran_Desert',
|
| 21 |
+
'Southeastern_Great_Basin',
|
| 22 |
+
'Southern_California_Coast',
|
| 23 |
+
'Southern_California_Mountains_and_Valleys',
|
| 24 |
+
'Southern_Cascades']
|
| 25 |
+
eco = ecoregions[index]
|
| 26 |
+
return eco
|
| 27 |
+
|
| 28 |
+
def split_layer(data3_url, con):
|
| 29 |
+
overlap_url = 's3://public-ca30x30/CA_Nature/2024/Preprocessing/v3/Habitat_and_Climate_zones/CWHR13_climate_dissolved_geoms_simplify10m_includesNA.parquet'
|
| 30 |
+
overlap_table = con.read_parquet(overlap_url)
|
| 31 |
+
SQM_PER_ACRE = 4046.8564224
|
| 32 |
+
t3 = con.read_parquet(data3_url).select("id", "name", "manager", "manager_type", "county", "gap_code",
|
| 33 |
+
"status", "land_tenure", "ecoregion", "access_type", "geom")
|
| 34 |
+
|
| 35 |
+
# append each id with the habitat + climate zone combo as its "sub_id"
|
| 36 |
+
habitat_letter_map = {
|
| 37 |
+
"Agriculture": "a",
|
| 38 |
+
"Barren/Other": "b",
|
| 39 |
+
"Conifer Forest": "c",
|
| 40 |
+
"Conifer Woodland": "d",
|
| 41 |
+
"Desert Shrub": "e",
|
| 42 |
+
"Desert Woodland": "f",
|
| 43 |
+
"Hardwood Forest": "g",
|
| 44 |
+
"Hardwood Woodland": "h",
|
| 45 |
+
"Herbaceous": "i",
|
| 46 |
+
"Shrub": "j",
|
| 47 |
+
"Urban": "k",
|
| 48 |
+
"Water": "l",
|
| 49 |
+
"Wetland": "m",
|
| 50 |
+
"None": "n"
|
| 51 |
+
}
|
| 52 |
+
|
| 53 |
+
climate_letter_map = {
|
| 54 |
+
"Zone 1": "a",
|
| 55 |
+
"Zone 2": "b",
|
| 56 |
+
"Zone 3": "c",
|
| 57 |
+
"Zone 4": "d",
|
| 58 |
+
"Zone 5": "e",
|
| 59 |
+
"Zone 6": "f",
|
| 60 |
+
"Zone 7": "g",
|
| 61 |
+
"Zone 8": "h",
|
| 62 |
+
"Zone 9": "i",
|
| 63 |
+
"Zone 10": "j",
|
| 64 |
+
"None": "k",
|
| 65 |
+
}
|
| 66 |
+
|
| 67 |
+
habitat_letter_table = ibis.memtable([{"habitat_type": k, "habitat_letter": v} for k, v in habitat_letter_map.items()])
|
| 68 |
+
climate_letter_table = ibis.memtable([{"climate_zone": k, "climate_letter": v} for k, v in climate_letter_map.items()])
|
| 69 |
+
|
| 70 |
+
# join mappings to overlap table
|
| 71 |
+
overlap_labeled = (
|
| 72 |
+
overlap_table
|
| 73 |
+
.inner_join(habitat_letter_table, "habitat_type")
|
| 74 |
+
.inner_join(climate_letter_table, "climate_zone")
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
# cross join and spatial intersection
|
| 78 |
+
joined = t3.cross_join(overlap_labeled)
|
| 79 |
+
joined = joined.mutate(intersects=t3.geom.intersects(overlap_labeled.geom))
|
| 80 |
+
|
| 81 |
+
# filter for intersection or include if no match (preserve unmatched)
|
| 82 |
+
matched = joined.filter(joined.intersects)
|
| 83 |
+
|
| 84 |
+
# calculate sub_id and geometry for matches
|
| 85 |
+
matched = matched.select(
|
| 86 |
+
id=t3.id,
|
| 87 |
+
sub_id=t3.id.cast("string")
|
| 88 |
+
.concat("_")
|
| 89 |
+
.concat(overlap_labeled.habitat_letter)
|
| 90 |
+
.concat(overlap_labeled.climate_letter)
|
| 91 |
+
.name("sub_id"),
|
| 92 |
+
habitat_type=overlap_labeled.habitat_type,
|
| 93 |
+
climate_zone=overlap_labeled.climate_zone,
|
| 94 |
+
name=t3.name,
|
| 95 |
+
manager=t3.manager,
|
| 96 |
+
manager_type=t3.manager_type,
|
| 97 |
+
county=t3.county,
|
| 98 |
+
gap_code=t3.gap_code,
|
| 99 |
+
status=t3.status,
|
| 100 |
+
land_tenure=t3.land_tenure,
|
| 101 |
+
ecoregion=t3.ecoregion,
|
| 102 |
+
access_type=t3.access_type,
|
| 103 |
+
geom=t3.geom.intersection(overlap_labeled.geom),
|
| 104 |
+
acres=(t3.geom.intersection(overlap_labeled.geom).area() / SQM_PER_ACRE).round(4)
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
# find unmatched records (no overlap)
|
| 108 |
+
matched_ids = matched.select("id").distinct()
|
| 109 |
+
|
| 110 |
+
# left join to find unmatched rows
|
| 111 |
+
unmatched = t3.left_join(matched_ids, "id").filter(matched_ids.id.isnull())
|
| 112 |
+
unmatched = unmatched.select(
|
| 113 |
+
id=t3.id,
|
| 114 |
+
sub_id=t3.id.cast("string").concat("_n").concat("k").name("sub_id"),
|
| 115 |
+
habitat_type=ibis.literal("None"),
|
| 116 |
+
climate_zone=ibis.literal("None"),
|
| 117 |
+
name=t3.name,
|
| 118 |
+
manager=t3.manager,
|
| 119 |
+
manager_type=t3.manager_type,
|
| 120 |
+
county=t3.county,
|
| 121 |
+
gap_code=t3.gap_code,
|
| 122 |
+
status=t3.status,
|
| 123 |
+
land_tenure=t3.land_tenure,
|
| 124 |
+
ecoregion=t3.ecoregion,
|
| 125 |
+
access_type=t3.access_type,
|
| 126 |
+
geom=t3.geom,
|
| 127 |
+
acres=(t3.geom.area() / SQM_PER_ACRE).round(4)
|
| 128 |
+
)
|
| 129 |
+
|
| 130 |
+
# compute unmatched residuals by subtracting all intersected parts from each t3.geom
|
| 131 |
+
matched_geoms = matched.group_by("id").aggregate(
|
| 132 |
+
matched_union=matched.geom.unary_union()
|
| 133 |
+
)
|
| 134 |
+
# join to get original geom
|
| 135 |
+
residuals = t3.inner_join(matched_geoms, "id").mutate(
|
| 136 |
+
residual_geom=t3.geom.difference(matched_geoms.matched_union)
|
| 137 |
+
)
|
| 138 |
+
# only keep meaningful residual geoms, not empty geoms.
|
| 139 |
+
residuals = (residuals
|
| 140 |
+
.filter((_.residual_geom.is_valid())
|
| 141 |
+
& ((_.residual_geom.area()) > 0 )
|
| 142 |
+
))
|
| 143 |
+
|
| 144 |
+
# unmatched parts
|
| 145 |
+
residual_rows = residuals.select(
|
| 146 |
+
id=t3.id,
|
| 147 |
+
sub_id=t3.id.cast("string").concat("_n").concat("k").name("sub_id"),
|
| 148 |
+
habitat_type=ibis.literal("None"),
|
| 149 |
+
climate_zone=ibis.literal("None"),
|
| 150 |
+
name=t3.name,
|
| 151 |
+
manager=t3.manager,
|
| 152 |
+
manager_type=t3.manager_type,
|
| 153 |
+
county=t3.county,
|
| 154 |
+
gap_code=t3.gap_code,
|
| 155 |
+
status=t3.status,
|
| 156 |
+
land_tenure=t3.land_tenure,
|
| 157 |
+
ecoregion=t3.ecoregion,
|
| 158 |
+
access_type=t3.access_type,
|
| 159 |
+
geom=_.residual_geom,
|
| 160 |
+
acres=(_.residual_geom.area() / SQM_PER_ACRE).round(4)
|
| 161 |
+
)
|
| 162 |
+
result = matched.union(unmatched).union(residual_rows)
|
| 163 |
+
return result
|
| 164 |
+
|
| 165 |
+
def check_results(con, url,save_url):
|
| 166 |
+
original_id = con.read_parquet(url).select('id').distinct().execute()['id']
|
| 167 |
+
new_id = con.read_parquet(save_url).select('id').distinct().execute()['id']
|
| 168 |
+
missing_ids = list(set(original_id)- set(new_id))
|
| 169 |
+
print(f'# of missing IDs: {len(missing_ids)}')
|
| 170 |
+
original_acres = con.read_parquet(url).select('acres').execute()['acres'].sum()
|
| 171 |
+
new_acres = con.read_parquet(save_url).select('acres').execute()['acres'].sum()
|
| 172 |
+
acres_loss = original_acres-new_acres
|
| 173 |
+
print(f'Acres loss: {acres_loss}\n')
|
| 174 |
+
print(f'Ratio: {new_acres/original_acres}\n')
|
| 175 |
+
return missing_ids
|
preprocess/split_data/split_geoms.ipynb
ADDED
|
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"id": "96bbe4c4-a600-437b-b096-dfb4ba2cc8fe",
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"source": [
|
| 8 |
+
"# Split geometries into habitat types and climate zones \n",
|
| 9 |
+
"To assign each feature a habitat type and climate zone, we split up protected areas that span multiple"
|
| 10 |
+
]
|
| 11 |
+
},
|
| 12 |
+
{
|
| 13 |
+
"cell_type": "code",
|
| 14 |
+
"execution_count": null,
|
| 15 |
+
"id": "d7150257-5f70-4419-a8fb-63bb12dd0963",
|
| 16 |
+
"metadata": {},
|
| 17 |
+
"outputs": [],
|
| 18 |
+
"source": [
|
| 19 |
+
"from split import * \n",
|
| 20 |
+
"import os\n",
|
| 21 |
+
"import sys\n",
|
| 22 |
+
"base_dir = os.path.abspath(os.path.join(os.getcwd(), '..'))\n",
|
| 23 |
+
"if base_dir not in sys.path:\n",
|
| 24 |
+
" sys.path.insert(0, base_dir)\n",
|
| 25 |
+
" \n",
|
| 26 |
+
"from minio_utils import * \n",
|
| 27 |
+
"con, _ = connect_minio()"
|
| 28 |
+
]
|
| 29 |
+
},
|
| 30 |
+
{
|
| 31 |
+
"cell_type": "code",
|
| 32 |
+
"execution_count": null,
|
| 33 |
+
"id": "3b3c5bb2-86d1-419d-8d3d-0a99fe18f442",
|
| 34 |
+
"metadata": {},
|
| 35 |
+
"outputs": [],
|
| 36 |
+
"source": [
|
| 37 |
+
"%%time\n",
|
| 38 |
+
"# run for all ecoregions + gap codes. \n",
|
| 39 |
+
"# If you don't process the data in subsets (gap codes and ecoregions), it'll take a few days and you'll need 64GB+ of memory \n",
|
| 40 |
+
"eco = get_ecoregion(10)\n",
|
| 41 |
+
"label = 'gap2'\n",
|
| 42 |
+
"print(label)\n",
|
| 43 |
+
"print(eco)\n",
|
| 44 |
+
"\n",
|
| 45 |
+
"url = f's3://public-ca30x30/CA_Nature/2024/Preprocessing/v3/subsets/base/{label}/{eco}_epsg3310.parquet'\n",
|
| 46 |
+
"result = split_layer(url, con)\n",
|
| 47 |
+
"save_url = f's3://public-ca30x30/CA_Nature/2024/Preprocessing/v3/subsets/split_habitat_climate/{label}/{label}_{eco}_habitat_climate.parquet'\n",
|
| 48 |
+
"result.to_parquet(save_url)\n",
|
| 49 |
+
"check_results(con, url,save_url)"
|
| 50 |
+
]
|
| 51 |
+
}
|
| 52 |
+
],
|
| 53 |
+
"metadata": {
|
| 54 |
+
"kernelspec": {
|
| 55 |
+
"display_name": "Python 3 (ipykernel)",
|
| 56 |
+
"language": "python",
|
| 57 |
+
"name": "python3"
|
| 58 |
+
},
|
| 59 |
+
"language_info": {
|
| 60 |
+
"codemirror_mode": {
|
| 61 |
+
"name": "ipython",
|
| 62 |
+
"version": 3
|
| 63 |
+
},
|
| 64 |
+
"file_extension": ".py",
|
| 65 |
+
"mimetype": "text/x-python",
|
| 66 |
+
"name": "python",
|
| 67 |
+
"nbconvert_exporter": "python",
|
| 68 |
+
"pygments_lexer": "ipython3",
|
| 69 |
+
"version": "3.12.10"
|
| 70 |
+
}
|
| 71 |
+
},
|
| 72 |
+
"nbformat": 4,
|
| 73 |
+
"nbformat_minor": 5
|
| 74 |
+
}
|
preprocess/zonal_stats/join_zonals.ipynb
ADDED
|
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"id": "ef62b0fd-67b0-4ad3-bad0-bdaec434acaf",
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"source": [
|
| 8 |
+
"# Joining zonal data\n",
|
| 9 |
+
"We split up into gap codes to compute zonal stats, so we need to join them into a single table again"
|
| 10 |
+
]
|
| 11 |
+
},
|
| 12 |
+
{
|
| 13 |
+
"cell_type": "code",
|
| 14 |
+
"execution_count": null,
|
| 15 |
+
"id": "e792c164-38bc-4821-823e-31274db6abec",
|
| 16 |
+
"metadata": {},
|
| 17 |
+
"outputs": [],
|
| 18 |
+
"source": [
|
| 19 |
+
"import ibis \n",
|
| 20 |
+
"from ibis import _\n",
|
| 21 |
+
"import os\n",
|
| 22 |
+
"import sys\n",
|
| 23 |
+
"base_dir = os.path.abspath(os.path.join(os.getcwd(), '..'))\n",
|
| 24 |
+
"if base_dir not in sys.path:\n",
|
| 25 |
+
" sys.path.insert(0, base_dir)\n",
|
| 26 |
+
" \n",
|
| 27 |
+
"from minio_utils import * \n",
|
| 28 |
+
"con, _ = connect_minio()"
|
| 29 |
+
]
|
| 30 |
+
},
|
| 31 |
+
{
|
| 32 |
+
"cell_type": "code",
|
| 33 |
+
"execution_count": null,
|
| 34 |
+
"id": "5c34a00b-ccea-4be8-add4-db242a6aba74",
|
| 35 |
+
"metadata": {
|
| 36 |
+
"scrolled": true
|
| 37 |
+
},
|
| 38 |
+
"outputs": [],
|
| 39 |
+
"source": [
|
| 40 |
+
"labels = ['gap1','gap2','gap3','gap4','nonconserved']\n",
|
| 41 |
+
"\n",
|
| 42 |
+
"for label in labels:\n",
|
| 43 |
+
" names = ['id',\n",
|
| 44 |
+
" 'pct_top_amphibian_richness','mean_amphibian_richness',\n",
|
| 45 |
+
" 'pct_top_reptile_richness','mean_reptile_richness',\n",
|
| 46 |
+
" 'pct_top_bird_richness','mean_bird_richness',\n",
|
| 47 |
+
" 'pct_top_mammal_richness','mean_mammal_richness',\n",
|
| 48 |
+
" 'pct_top_freshwater_richness','mean_top_freshwater_richness',\n",
|
| 49 |
+
" 'pct_wetlands','pct_fire','pct_farmland','pct_grazing',\n",
|
| 50 |
+
" 'pct_disadvantaged_community','pct_low_income_community',\n",
|
| 51 |
+
" 'mean_plant_richness','pct_top_plant_richness'\n",
|
| 52 |
+
" ]\n",
|
| 53 |
+
" \n",
|
| 54 |
+
" agg_dict = {\n",
|
| 55 |
+
" name: _[name].first() for name in names\n",
|
| 56 |
+
" }\n",
|
| 57 |
+
" stats_url = f's3://public-ca30x30/CA_Nature/2024/Preprocessing/v3/stats/{label}/**.parquet'\n",
|
| 58 |
+
" a = (con.read_parquet(stats_url, union_by_name = True)\n",
|
| 59 |
+
" .drop('geom')\n",
|
| 60 |
+
" .group_by('sub_id')\n",
|
| 61 |
+
" .aggregate(**agg_dict)\n",
|
| 62 |
+
" )\n",
|
| 63 |
+
" \n",
|
| 64 |
+
" url = f's3://public-ca30x30/CA_Nature/2024/Preprocessing/v3/subsets/split_habitat_climate/{label}_habitat_climate.parquet'\n",
|
| 65 |
+
" base = con.read_parquet(url)\n",
|
| 66 |
+
" joined = base.inner_join(a,['sub_id','id'])\n",
|
| 67 |
+
" save_url = f's3://public-ca30x30/CA_Nature/2024/Preprocessing/v3/stats/{label}_habitat_climate_stats.parquet'\n",
|
| 68 |
+
" joined.to_parquet(save_url)"
|
| 69 |
+
]
|
| 70 |
+
},
|
| 71 |
+
{
|
| 72 |
+
"cell_type": "code",
|
| 73 |
+
"execution_count": null,
|
| 74 |
+
"id": "b6c2451f-aa6a-4d4e-b233-8b8b590fbfe0",
|
| 75 |
+
"metadata": {},
|
| 76 |
+
"outputs": [],
|
| 77 |
+
"source": [
|
| 78 |
+
"cols = ['id',\n",
|
| 79 |
+
" 'sub_id',\n",
|
| 80 |
+
" 'name',\n",
|
| 81 |
+
" 'manager',\n",
|
| 82 |
+
" 'manager_type',\n",
|
| 83 |
+
" 'gap_code',\n",
|
| 84 |
+
" 'status',\n",
|
| 85 |
+
" 'land_tenure',\n",
|
| 86 |
+
" 'access_type',\n",
|
| 87 |
+
" 'county',\n",
|
| 88 |
+
" 'ecoregion',\n",
|
| 89 |
+
" 'habitat_type',\n",
|
| 90 |
+
" 'climate_zone',\n",
|
| 91 |
+
" 'mean_amphibian_richness',\n",
|
| 92 |
+
" 'mean_reptile_richness',\n",
|
| 93 |
+
" 'mean_bird_richness',\n",
|
| 94 |
+
" 'mean_mammal_richness',\n",
|
| 95 |
+
" 'mean_plant_richness',\n",
|
| 96 |
+
" 'mean_freshwater_richness',\n",
|
| 97 |
+
" 'pct_top_amphibian_richness',\n",
|
| 98 |
+
" 'pct_top_reptile_richness',\n",
|
| 99 |
+
" 'pct_top_bird_richness',\n",
|
| 100 |
+
" 'pct_top_mammal_richness',\n",
|
| 101 |
+
" 'pct_top_plant_richness',\n",
|
| 102 |
+
" 'pct_top_freshwater_richness',\n",
|
| 103 |
+
" 'pct_wetlands',\n",
|
| 104 |
+
" 'pct_fire',\n",
|
| 105 |
+
" 'pct_farmland',\n",
|
| 106 |
+
" 'pct_grazing_lands',\n",
|
| 107 |
+
" 'pct_disadvantaged_community',\n",
|
| 108 |
+
" 'pct_low_income_community',\n",
|
| 109 |
+
" 'acres',\n",
|
| 110 |
+
" 'geom']"
|
| 111 |
+
]
|
| 112 |
+
},
|
| 113 |
+
{
|
| 114 |
+
"cell_type": "code",
|
| 115 |
+
"execution_count": null,
|
| 116 |
+
"id": "0c986c99-a403-4266-b031-3a882d93c1fe",
|
| 117 |
+
"metadata": {},
|
| 118 |
+
"outputs": [],
|
| 119 |
+
"source": [
|
| 120 |
+
"stats_joined_url = f's3://public-ca30x30/CA_Nature/2024/Preprocessing/v3/stats/*_habitat_climate_stats.parquet'\n",
|
| 121 |
+
"joined_stats = (con\n",
|
| 122 |
+
" .read_parquet(stats_joined_url)\n",
|
| 123 |
+
" .mutate(geom = _.geom.convert('epsg:3310','epsg:4326'))\n",
|
| 124 |
+
" .rename(pct_grazing_lands = \"pct_grazing\")\n",
|
| 125 |
+
" .mutate(gap_code = _.gap_code.substitute({'Non-Conservation Area':'None'}))\n",
|
| 126 |
+
" .mutate(name = _.name.fill_null('None'))\n",
|
| 127 |
+
" .mutate(manager = _.manager.fill_null('None'))\n",
|
| 128 |
+
" .mutate(manager_type = _.manager_type.fill_null('None'))\n",
|
| 129 |
+
" .mutate(gap_code = _.gap_code.fill_null('None'))\n",
|
| 130 |
+
" .mutate(status = _.status.fill_null('None'))\n",
|
| 131 |
+
" .mutate(land_tenure = _.land_tenure.fill_null('None'))\n",
|
| 132 |
+
" .mutate(access_type = _.access_type.fill_null('None'))\n",
|
| 133 |
+
" .mutate(county = _.county.fill_null('None'))\n",
|
| 134 |
+
" .mutate(ecoregion = _.ecoregion.fill_null('None'))\n",
|
| 135 |
+
" .mutate(habitat_type = _.habitat_type.fill_null('None'))\n",
|
| 136 |
+
" .mutate(climate_zone = _.climate_zone.fill_null('None'))\n",
|
| 137 |
+
")\n",
|
| 138 |
+
"\n",
|
| 139 |
+
"url1 = f's3://public-ca30x30/CA_Nature/2024/Preprocessing/v3/ca30x30_habitat_climate_stats.parquet'\n",
|
| 140 |
+
"url2= f's3://public-ca30x30/ca30x30_cbn_v3.parquet'\n",
|
| 141 |
+
"data = joined_stats.select(cols).order_by('gap_code','county','name','id','sub_id')\n",
|
| 142 |
+
"data.to_parquet(url1)\n",
|
| 143 |
+
"data.to_parquet(url2)\n"
|
| 144 |
+
]
|
| 145 |
+
}
|
| 146 |
+
],
|
| 147 |
+
"metadata": {
|
| 148 |
+
"kernelspec": {
|
| 149 |
+
"display_name": "Python 3 (ipykernel)",
|
| 150 |
+
"language": "python",
|
| 151 |
+
"name": "python3"
|
| 152 |
+
},
|
| 153 |
+
"language_info": {
|
| 154 |
+
"codemirror_mode": {
|
| 155 |
+
"name": "ipython",
|
| 156 |
+
"version": 3
|
| 157 |
+
},
|
| 158 |
+
"file_extension": ".py",
|
| 159 |
+
"mimetype": "text/x-python",
|
| 160 |
+
"name": "python",
|
| 161 |
+
"nbconvert_exporter": "python",
|
| 162 |
+
"pygments_lexer": "ipython3",
|
| 163 |
+
"version": "3.12.10"
|
| 164 |
+
}
|
| 165 |
+
},
|
| 166 |
+
"nbformat": 4,
|
| 167 |
+
"nbformat_minor": 5
|
| 168 |
+
}
|
preprocess/zonal_stats/raster_stats.ipynb
ADDED
|
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"id": "68cd13a8-3eb1-461c-b5e1-4f8a356abfeb",
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"source": [
|
| 8 |
+
"# Compute zonal stats for protected areas with raster data "
|
| 9 |
+
]
|
| 10 |
+
},
|
| 11 |
+
{
|
| 12 |
+
"cell_type": "code",
|
| 13 |
+
"execution_count": null,
|
| 14 |
+
"id": "1852e008-906d-40e5-826f-a8fa92d9fceb",
|
| 15 |
+
"metadata": {
|
| 16 |
+
"editable": true,
|
| 17 |
+
"slideshow": {
|
| 18 |
+
"slide_type": ""
|
| 19 |
+
},
|
| 20 |
+
"tags": []
|
| 21 |
+
},
|
| 22 |
+
"outputs": [],
|
| 23 |
+
"source": [
|
| 24 |
+
"from raster_utils import * \n",
|
| 25 |
+
"import os\n",
|
| 26 |
+
"import sys\n",
|
| 27 |
+
"base_dir = os.path.abspath(os.path.join(os.getcwd(), '..'))\n",
|
| 28 |
+
"if base_dir not in sys.path:\n",
|
| 29 |
+
" sys.path.insert(0, base_dir)\n",
|
| 30 |
+
" \n",
|
| 31 |
+
"from minio_utils import * \n",
|
| 32 |
+
"con, _ = connect_minio()"
|
| 33 |
+
]
|
| 34 |
+
},
|
| 35 |
+
{
|
| 36 |
+
"cell_type": "code",
|
| 37 |
+
"execution_count": null,
|
| 38 |
+
"id": "d91efb56-e6e9-4cb6-8ce6-54d318e62534",
|
| 39 |
+
"metadata": {},
|
| 40 |
+
"outputs": [],
|
| 41 |
+
"source": [
|
| 42 |
+
"%%time \n",
|
| 43 |
+
"# run for all metrics, files, and gap codes \n",
|
| 44 |
+
"metric = 'overlap'\n",
|
| 45 |
+
"label = 'gap1'\n",
|
| 46 |
+
"index = 0\n",
|
| 47 |
+
"\n",
|
| 48 |
+
"get_raster_stats(con, label, name, raster, metric, index)"
|
| 49 |
+
]
|
| 50 |
+
},
|
| 51 |
+
{
|
| 52 |
+
"cell_type": "code",
|
| 53 |
+
"execution_count": null,
|
| 54 |
+
"id": "1da6f99d-ba7f-44ed-8100-cc3371966693",
|
| 55 |
+
"metadata": {},
|
| 56 |
+
"outputs": [],
|
| 57 |
+
"source": [
|
| 58 |
+
"from IPython.lib.display import Audio\n",
|
| 59 |
+
"import numpy as np\n",
|
| 60 |
+
"\n",
|
| 61 |
+
"framerate = 4410\n",
|
| 62 |
+
"play_time_seconds = 1\n",
|
| 63 |
+
"\n",
|
| 64 |
+
"t = np.linspace(0, play_time_seconds, framerate*play_time_seconds)\n",
|
| 65 |
+
"audio_data = np.sin(2*np.pi*300*t) + np.sin(2*np.pi*240*t)\n",
|
| 66 |
+
"Audio(audio_data, rate=framerate, autoplay=True)"
|
| 67 |
+
]
|
| 68 |
+
}
|
| 69 |
+
],
|
| 70 |
+
"metadata": {
|
| 71 |
+
"kernelspec": {
|
| 72 |
+
"display_name": "Python 3 (ipykernel)",
|
| 73 |
+
"language": "python",
|
| 74 |
+
"name": "python3"
|
| 75 |
+
},
|
| 76 |
+
"language_info": {
|
| 77 |
+
"codemirror_mode": {
|
| 78 |
+
"name": "ipython",
|
| 79 |
+
"version": 3
|
| 80 |
+
},
|
| 81 |
+
"file_extension": ".py",
|
| 82 |
+
"mimetype": "text/x-python",
|
| 83 |
+
"name": "python",
|
| 84 |
+
"nbconvert_exporter": "python",
|
| 85 |
+
"pygments_lexer": "ipython3",
|
| 86 |
+
"version": "3.12.10"
|
| 87 |
+
}
|
| 88 |
+
},
|
| 89 |
+
"nbformat": 4,
|
| 90 |
+
"nbformat_minor": 5
|
| 91 |
+
}
|
preprocess/zonal_stats/raster_utils.py
ADDED
|
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
from exactextract import exact_extract
|
| 3 |
+
import ibis
|
| 4 |
+
from ibis import _
|
| 5 |
+
|
| 6 |
+
def get_raster_file(metric, index):
|
| 7 |
+
mean_end_plant = '/vsicurl/https://minio.carlboettiger.info/public-ca30x30/CBN/Biodiversity_unique/Rarityweighted_endemic_plant_richness/endemicspecies_E_epsg3310.tif'
|
| 8 |
+
mean_plant = '/vsicurl/https://minio.carlboettiger.info/public-ca30x30/CBN/Biodiversity_unique/Plant_richness/species_D.tif'
|
| 9 |
+
pct_plant = '/vsicurl/https://minio.carlboettiger.info/public-ca30x30/CBN/Biodiversity_unique/Plant_richness/species_D_80percent_epsg3310.tif'
|
| 10 |
+
pct_end_plant = '/vsicurl/https://minio.carlboettiger.info/public-ca30x30/CBN/Biodiversity_unique/Rarityweighted_endemic_plant_richness/endemicspecies_E_80percent_epsg3310.tif'
|
| 11 |
+
if metric == 'mean':
|
| 12 |
+
names = ['mean_plant_richness','mean_rarityweighted_endemic_plant_richness']
|
| 13 |
+
rasters = [mean_plant, mean_end_plant]
|
| 14 |
+
elif metric == 'overlap':
|
| 15 |
+
names = ['pct_top_plant_richness','pct_rarityweighted_endemic_plant_richness']
|
| 16 |
+
rasters = [pct_plant, pct_end_plant]
|
| 17 |
+
return names[index], rasters[index]
|
| 18 |
+
|
| 19 |
+
def get_raster_stats(con, label, name, raster, metric, index):
|
| 20 |
+
name, raster = get_raster_file(metric, index)
|
| 21 |
+
compute_raster_stats(con, label, name, raster, metric)
|
| 22 |
+
return
|
| 23 |
+
|
| 24 |
+
def compute_percentage_overlap(df, name):
|
| 25 |
+
def extract_overlap(row):
|
| 26 |
+
if 1 in row['unique']:
|
| 27 |
+
idx = row['unique'].index(1)
|
| 28 |
+
return round(row['frac'][idx], 6)
|
| 29 |
+
return 0
|
| 30 |
+
df[name] = df.apply(extract_overlap, axis=1)
|
| 31 |
+
return df[['id', 'sub_id', name, 'acres']]
|
| 32 |
+
|
| 33 |
+
def compute_raster_stats(con, label, name, raster, metric = 'mean'):
|
| 34 |
+
print(label)
|
| 35 |
+
print(metric)
|
| 36 |
+
print(name)
|
| 37 |
+
url = f's3://public-ca30x30/CA_Nature/2024/Preprocessing/v3/subsets/split_habitat_climate/{label}_habitat_climate.parquet'
|
| 38 |
+
if label in ['gap2','gap4']: #don't compute with tiny polygons (exactextract gets mad if you keep them)
|
| 39 |
+
polys = con.read_parquet(url).rename(new_id = 'id').execute()
|
| 40 |
+
small = polys[round(polys['acres'],10) ==0]
|
| 41 |
+
a = ibis.memtable(small, name = 'tmp')
|
| 42 |
+
exclude_ids = a.select('sub_id').distinct().execute()['sub_id'].to_list()
|
| 43 |
+
polys = polys[~polys['sub_id'].isin(exclude_ids)]
|
| 44 |
+
|
| 45 |
+
else:
|
| 46 |
+
polys = con.read_parquet(url).rename(new_id = 'id').execute()
|
| 47 |
+
polys = polys.set_crs('epsg:3310')
|
| 48 |
+
|
| 49 |
+
if metric == 'mean':
|
| 50 |
+
out = exact_extract(raster, polys, [metric], include_cols=["new_id","sub_id","acres"])
|
| 51 |
+
rows = [{'id': f['properties']['new_id'], 'sub_id': f['properties']['sub_id'], name: round(f['properties'][metric], 6),
|
| 52 |
+
'acres': f['properties']['acres']} for f in out]
|
| 53 |
+
stats = pd.DataFrame(rows)
|
| 54 |
+
|
| 55 |
+
# computing the overlap of each unique parcel then computing the overlap of only 1's
|
| 56 |
+
elif metric == 'overlap':
|
| 57 |
+
metrics = ['frac','unique']
|
| 58 |
+
out = exact_extract(raster, polys, metrics, include_cols=["new_id","sub_id","acres"])
|
| 59 |
+
rows = [{'id': f['properties']['new_id'], 'sub_id': f['properties']['sub_id'], 'frac': list(f['properties']['frac']),
|
| 60 |
+
'unique': list(f['properties']['unique']),
|
| 61 |
+
'acres': f['properties']['acres']} for f in out]
|
| 62 |
+
stats = compute_percentage_overlap(pd.DataFrame(rows), name)
|
| 63 |
+
out = con.create_table('tmp', stats, overwrite = True)
|
| 64 |
+
|
| 65 |
+
##zeroing out tiny polygons
|
| 66 |
+
if label in ['gap2','gap4']:
|
| 67 |
+
excluded = con.read_parquet(url).filter(_.sub_id.isin(exclude_ids)).mutate(**{name: ibis.literal(0)})
|
| 68 |
+
excluded = excluded.cast({name:"float64"}).select('sub_id','id',name,'acres')
|
| 69 |
+
out = out.union(excluded)
|
| 70 |
+
save_url = f's3://public-ca30x30/CA_Nature/2024/Preprocessing/v3/stats/{label}/{name}.parquet'
|
| 71 |
+
out.to_parquet(save_url)
|
| 72 |
+
return
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
|
preprocess/zonal_stats/vector_stats.ipynb
ADDED
|
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"id": "d0e4ad58-9eeb-43c4-811a-9c701321afe1",
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"source": [
|
| 8 |
+
"# Compute zonal stats for protected areas with vector data "
|
| 9 |
+
]
|
| 10 |
+
},
|
| 11 |
+
{
|
| 12 |
+
"cell_type": "code",
|
| 13 |
+
"execution_count": null,
|
| 14 |
+
"id": "b756f206-651f-459e-8977-1fb99afeab27",
|
| 15 |
+
"metadata": {},
|
| 16 |
+
"outputs": [],
|
| 17 |
+
"source": [
|
| 18 |
+
"from vector_utils import *\n",
|
| 19 |
+
"import os\n",
|
| 20 |
+
"import sys\n",
|
| 21 |
+
"base_dir = os.path.abspath(os.path.join(os.getcwd(), '..'))\n",
|
| 22 |
+
"if base_dir not in sys.path:\n",
|
| 23 |
+
" sys.path.insert(0, base_dir)\n",
|
| 24 |
+
" \n",
|
| 25 |
+
"from minio_utils import * \n",
|
| 26 |
+
"con, _ = connect_minio()"
|
| 27 |
+
]
|
| 28 |
+
},
|
| 29 |
+
{
|
| 30 |
+
"cell_type": "code",
|
| 31 |
+
"execution_count": null,
|
| 32 |
+
"id": "d1d692e2-a5bb-4c1d-b679-48af858d5853",
|
| 33 |
+
"metadata": {},
|
| 34 |
+
"outputs": [],
|
| 35 |
+
"source": [
|
| 36 |
+
"%%time \n",
|
| 37 |
+
"# run for all metrics, files, and gap codes \n",
|
| 38 |
+
"metric = 'overlap'\n",
|
| 39 |
+
"label = 'gap1'\n",
|
| 40 |
+
"index = 0\n",
|
| 41 |
+
"\n",
|
| 42 |
+
"vector_stats, save_url = get_vector_stats(con, index, label, metric)\n",
|
| 43 |
+
"vector_stats.to_parquet(save_url)"
|
| 44 |
+
]
|
| 45 |
+
},
|
| 46 |
+
{
|
| 47 |
+
"cell_type": "code",
|
| 48 |
+
"execution_count": null,
|
| 49 |
+
"id": "fc1dedcd-6823-41fd-a8da-2d118a33ca70",
|
| 50 |
+
"metadata": {},
|
| 51 |
+
"outputs": [],
|
| 52 |
+
"source": [
|
| 53 |
+
"from IPython.lib.display import Audio\n",
|
| 54 |
+
"import numpy as np\n",
|
| 55 |
+
"\n",
|
| 56 |
+
"framerate = 4410\n",
|
| 57 |
+
"play_time_seconds = 1\n",
|
| 58 |
+
"\n",
|
| 59 |
+
"t = np.linspace(0, play_time_seconds, framerate*play_time_seconds)\n",
|
| 60 |
+
"audio_data = np.sin(2*np.pi*300*t) + np.sin(2*np.pi*240*t)\n",
|
| 61 |
+
"Audio(audio_data, rate=framerate, autoplay=True)"
|
| 62 |
+
]
|
| 63 |
+
},
|
| 64 |
+
{
|
| 65 |
+
"cell_type": "code",
|
| 66 |
+
"execution_count": null,
|
| 67 |
+
"id": "212e9d19-caf1-429a-a42c-a5377b9e7b05",
|
| 68 |
+
"metadata": {},
|
| 69 |
+
"outputs": [],
|
| 70 |
+
"source": []
|
| 71 |
+
}
|
| 72 |
+
],
|
| 73 |
+
"metadata": {
|
| 74 |
+
"kernelspec": {
|
| 75 |
+
"display_name": "Python 3 (ipykernel)",
|
| 76 |
+
"language": "python",
|
| 77 |
+
"name": "python3"
|
| 78 |
+
},
|
| 79 |
+
"language_info": {
|
| 80 |
+
"codemirror_mode": {
|
| 81 |
+
"name": "ipython",
|
| 82 |
+
"version": 3
|
| 83 |
+
},
|
| 84 |
+
"file_extension": ".py",
|
| 85 |
+
"mimetype": "text/x-python",
|
| 86 |
+
"name": "python",
|
| 87 |
+
"nbconvert_exporter": "python",
|
| 88 |
+
"pygments_lexer": "ipython3",
|
| 89 |
+
"version": "3.12.10"
|
| 90 |
+
}
|
| 91 |
+
},
|
| 92 |
+
"nbformat": 4,
|
| 93 |
+
"nbformat_minor": 5
|
| 94 |
+
}
|
preprocess/zonal_stats/vector_utils.py
ADDED
|
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import ibis
|
| 2 |
+
from ibis import _
|
| 3 |
+
import ibis.selectors as s
|
| 4 |
+
import ibis.expr.datatypes as dt
|
| 5 |
+
import os
|
| 6 |
+
|
| 7 |
+
def get_url(folder, file, bucket = 'public-ca30x30', base_folder = 'CBN', method = 'write'):
|
| 8 |
+
if method == 'write':
|
| 9 |
+
minio = 's3://'
|
| 10 |
+
else:
|
| 11 |
+
minio = 'https://minio.carlboettiger.info/'
|
| 12 |
+
if base_folder is None:
|
| 13 |
+
path = os.path.join(bucket,folder,file)
|
| 14 |
+
else:
|
| 15 |
+
path = os.path.join(bucket,base_folder,folder,file)
|
| 16 |
+
url = minio+path
|
| 17 |
+
return url
|
| 18 |
+
|
| 19 |
+
def get_vector_file(metric):
|
| 20 |
+
# CBN vector data
|
| 21 |
+
amph_richness = get_url('ACE_biodiversity/ACE_amphibian_richness','ACE_amphibian_richness_epsg3310.parquet')
|
| 22 |
+
pct_amph_richness = get_url('ACE_biodiversity/ACE_amphibian_richness','ACE_amphibian_richness_80percent_epsg3310.parquet')
|
| 23 |
+
|
| 24 |
+
reptile_richness = get_url('ACE_biodiversity/ACE_reptile_richness','ACE_reptile_richness_epsg3310.parquet')
|
| 25 |
+
pct_reptile_richness = get_url('ACE_biodiversity/ACE_reptile_richness','ACE_reptile_richness_80percent_epsg3310.parquet')
|
| 26 |
+
|
| 27 |
+
bird_richness = get_url('ACE_biodiversity/ACE_bird_richness','ACE_bird_richness_epsg3310.parquet')
|
| 28 |
+
pct_bird_richness = get_url('ACE_biodiversity/ACE_bird_richness','ACE_bird_richness_80percent_epsg3310.parquet')
|
| 29 |
+
|
| 30 |
+
mammal_richness = get_url('ACE_biodiversity/ACE_mammal_richness','ACE_mammal_richness_epsg3310.parquet')
|
| 31 |
+
pct_mammal_richness = get_url('ACE_biodiversity/ACE_mammal_richness','ACE_mammal_richness_80percent_epsg3310.parquet')
|
| 32 |
+
|
| 33 |
+
rare_amphibian_richness = get_url('ACE_biodiversity/ACE_rare_amphibian_richness','ACE_rare_amphibian_richness_epsg3310.parquet')
|
| 34 |
+
pct_rare_amphibian_richness = get_url('ACE_biodiversity/ACE_rare_amphibian_richness','ACE_rare_amphibian_richness_95percent_epsg3310.parquet')
|
| 35 |
+
|
| 36 |
+
rare_reptile_richness = get_url('ACE_biodiversity/ACE_rare_reptile_richness','ACE_rare_reptile_richness_epsg3310.parquet')
|
| 37 |
+
pct_rare_reptile_richness = get_url('ACE_biodiversity/ACE_rare_reptile_richness','ACE_rare_reptile_richness_95percent_epsg3310.parquet')
|
| 38 |
+
|
| 39 |
+
rare_bird_richness = get_url('ACE_biodiversity/ACE_rare_bird_richness','ACE_rare_bird_richness_epsg3310.parquet')
|
| 40 |
+
pct_rare_bird_richness = get_url('ACE_biodiversity/ACE_rare_bird_richness','ACE_rare_bird_richness_95percent_epsg3310.parquet')
|
| 41 |
+
|
| 42 |
+
rare_mammal_richness = get_url('ACE_biodiversity/ACE_rare_mammal_richness','ACE_rare_mammal_richness_epsg3310.parquet')
|
| 43 |
+
pct_rare_mammal_richness = get_url('ACE_biodiversity/ACE_rare_mammal_richness','ACE_rare_mammal_richness_95percent_epsg3310.parquet')
|
| 44 |
+
|
| 45 |
+
endemic_amphibian_richness = get_url('ACE_biodiversity/ACE_endemic_amphibian_richness','ACE_endemic_amphibian_richness_epsg3310.parquet')
|
| 46 |
+
pct_endemic_amphibian_richness = get_url('ACE_biodiversity/ACE_endemic_amphibian_richness','ACE_endemic_amphibian_richness_95percent_epsg3310.parquet')
|
| 47 |
+
|
| 48 |
+
endemic_reptile_richness = get_url('ACE_biodiversity/ACE_endemic_reptile_richness','ACE_endemic_reptile_richness_epsg3310.parquet')
|
| 49 |
+
pct_endemic_reptile_richness = get_url('ACE_biodiversity/ACE_endemic_reptile_richness','ACE_endemic_reptile_richness_95percent_epsg3310.parquet')
|
| 50 |
+
|
| 51 |
+
endemic_bird_richness = get_url('ACE_biodiversity/ACE_endemic_bird_richness','ACE_endemic_bird_richness_epsg3310.parquet')
|
| 52 |
+
pct_endemic_bird_richness = get_url('ACE_biodiversity/ACE_endemic_bird_richness','ACE_endemic_bird_richness_95percent_epsg3310.parquet')
|
| 53 |
+
|
| 54 |
+
endemic_mammal_richness = get_url('ACE_biodiversity/ACE_endemic_mammal_richness','ACE_endemic_mammal_richness_epsg3310.parquet')
|
| 55 |
+
pct_endemic_mammal_richness = get_url('ACE_biodiversity/ACE_endemic_mammal_richness','ACE_endemic_mammal_richness_95percent_epsg3310.parquet')
|
| 56 |
+
|
| 57 |
+
freshwater_richness = get_url('Freshwater_resources/Freshwater_species_richness','freshwater_species_richness_ds1197_epsg3310.parquet')
|
| 58 |
+
pct_freshwater_richness = get_url('Freshwater_resources/Freshwater_species_richness','freshwater_species_richness_ds1197_80percent_epsg3310.parquet')
|
| 59 |
+
|
| 60 |
+
wetlands = get_url('Freshwater_resources/Wetlands','CA_wetlands_epsg3310.parquet')
|
| 61 |
+
fire = get_url('Climate_risks/Historical_fire_perimeters','calfire_2023_epsg3310.parquet')
|
| 62 |
+
farmland = get_url('NBS_agriculture/Farmland_all/Farmland','Farmland_2018_epsg3310.parquet')
|
| 63 |
+
grazing = get_url('NBS_agriculture/Farmland_all/Lands_suitable_grazing','Grazing_land_2018_epsg3310.parquet')
|
| 64 |
+
DAC = get_url('Progress_data_new_protection/DAC','DAC_2022_epsg3310.parquet')
|
| 65 |
+
low_income = get_url('Progress_data_new_protection/Low_income_communities','low_income_CalEnviroScreen4_epsg3310.parquet')
|
| 66 |
+
|
| 67 |
+
pct_newly_protected = get_url('Progress_data_new_protection/Newly_counted_lands/dissolved','newly_protected_2024_union_epsg3310.parquet')
|
| 68 |
+
pct_data_improvement = get_url('Progress_data_new_protection/Newly_counted_lands/dissolved','data_improvement_2024_union_epsg3310.parquet')
|
| 69 |
+
pct_increased_management = get_url('Progress_data_new_protection/Newly_counted_lands/dissolved','increased_management_2024_union_epsg3310.parquet')
|
| 70 |
+
|
| 71 |
+
if metric == 'mean':
|
| 72 |
+
names = ['mean_amphibian_richness','mean_reptile_richness',
|
| 73 |
+
'mean_bird_richness','mean_mammal_richness',
|
| 74 |
+
'mean_rare_amphibian_richness','mean_rare_reptile_richness',
|
| 75 |
+
'mean_rare_bird_richness','mean_rare_mammal_richness',
|
| 76 |
+
'mean_endemic_amphibian_richness','mean_endemic_reptile_richness',
|
| 77 |
+
'mean_endemic_bird_richness','mean_endemic_mammal_richness',
|
| 78 |
+
'mean_freshwater_richness']
|
| 79 |
+
|
| 80 |
+
vectors = [amph_richness, reptile_richness,
|
| 81 |
+
bird_richness, mammal_richness,
|
| 82 |
+
rare_amphibian_richness, rare_reptile_richness,
|
| 83 |
+
rare_bird_richness, rare_mammal_richness,
|
| 84 |
+
endemic_amphibian_richness,
|
| 85 |
+
endemic_reptile_richness,
|
| 86 |
+
endemic_bird_richness,
|
| 87 |
+
endemic_mammal_richness,
|
| 88 |
+
freshwater_richness]
|
| 89 |
+
|
| 90 |
+
cols = ['NtvAmph','NtvRept','NtvBird','NtvMamm',
|
| 91 |
+
'RarAmph','RarRept','RarBird','RarMamm',
|
| 92 |
+
'AmphEndem','ReptEndem','BirdEndem','MammEndem',
|
| 93 |
+
'Freshwater_Species_Count']
|
| 94 |
+
|
| 95 |
+
elif metric == 'overlap':
|
| 96 |
+
names = ['pct_top_amphibian_richness','pct_top_reptile_richness',
|
| 97 |
+
'pct_top_bird_richness','pct_top_mammal_richness',
|
| 98 |
+
'pct_rare_amphibian_richness','pct_rare_reptile_richness',
|
| 99 |
+
'pct_rare_bird_richness','pct_rare_mammal_richness',
|
| 100 |
+
'pct_endemic_amphibian_richness','pct_endemic_reptile_richness',
|
| 101 |
+
'pct_endemic_bird_richness','pct_endemic_mammal_richness',
|
| 102 |
+
'pct_top_freshwater_richness',
|
| 103 |
+
'pct_wetlands','pct_fire','pct_farmland','pct_grazing',
|
| 104 |
+
'pct_disadvantaged_community','pct_low_income_community',
|
| 105 |
+
'pct_newly_protected','pct_data_improvement','pct_increased_management']
|
| 106 |
+
|
| 107 |
+
vectors = [pct_amph_richness, pct_reptile_richness,
|
| 108 |
+
pct_bird_richness, pct_mammal_richness,
|
| 109 |
+
pct_rare_amphibian_richness, pct_rare_reptile_richness,
|
| 110 |
+
pct_rare_bird_richness, pct_rare_mammal_richness,
|
| 111 |
+
pct_endemic_amphibian_richness,
|
| 112 |
+
pct_endemic_reptile_richness,
|
| 113 |
+
pct_endemic_bird_richness,
|
| 114 |
+
pct_endemic_mammal_richness,
|
| 115 |
+
pct_freshwater_richness,
|
| 116 |
+
wetlands,
|
| 117 |
+
fire, farmland, grazing,
|
| 118 |
+
DAC, low_income,
|
| 119 |
+
pct_newly_protected,
|
| 120 |
+
pct_data_improvement,
|
| 121 |
+
pct_increased_management
|
| 122 |
+
]
|
| 123 |
+
cols = [None] * len(vectors)
|
| 124 |
+
return names, vectors, cols
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
def get_vector_stats(con, index, label, metric):
|
| 128 |
+
names, vectors, cols = get_vector_file(metric)
|
| 129 |
+
name = names[index]
|
| 130 |
+
vector = vectors[index]
|
| 131 |
+
col = cols[index]
|
| 132 |
+
print(label)
|
| 133 |
+
print(name)
|
| 134 |
+
url = f's3://public-ca30x30/CA_Nature/2024/Preprocessing/v3/subsets/split_habitat_climate/{label}_habitat_climate.parquet'
|
| 135 |
+
stats_url = f's3://public-ca30x30/CA_Nature/2024/Preprocessing/v3/stats/{label}/{name}.parquet'
|
| 136 |
+
vector_stats = vector_vector_stats(con, url, vector, metric, col)
|
| 137 |
+
vector_stats = vector_stats.rename(**{name: metric})
|
| 138 |
+
return vector_stats, stats_url
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
# usage: t.mutate(geom_valid = ST_MakeValid(t.geom))
|
| 142 |
+
@ibis.udf.scalar.builtin
|
| 143 |
+
def ST_MakeValid(geom) -> dt.geometry:
|
| 144 |
+
...
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
def vector_vector_stats(con, base, data_layer, metric, col):
|
| 148 |
+
print(f'metric: {metric}')
|
| 149 |
+
print(f'column name: {col}')
|
| 150 |
+
t1 = con.read_parquet(base).select(_.id, _.sub_id, _.geom)
|
| 151 |
+
if metric == 'mean':
|
| 152 |
+
t2 = con.read_parquet(data_layer).rename(value = col).select(_.geom, _.value)
|
| 153 |
+
else:
|
| 154 |
+
t2 = con.read_parquet(data_layer).select(_.geom)
|
| 155 |
+
|
| 156 |
+
t1 = t1.mutate(geom = ST_MakeValid(_.geom))
|
| 157 |
+
t2 = t2.mutate(geom = ST_MakeValid(_.geom))
|
| 158 |
+
|
| 159 |
+
stats = (t1
|
| 160 |
+
.left_join(t2, t1.geom.intersects(t2.geom))
|
| 161 |
+
.group_by(t1.id, t1.sub_id, t1.geom)
|
| 162 |
+
)
|
| 163 |
+
if metric == 'overlap':
|
| 164 |
+
stats = (stats.agg(overlap = (
|
| 165 |
+
t1.geom.intersection(t2.geom).area() / t1.geom.area())
|
| 166 |
+
.sum().coalesce(0).round(3) )) # overlap
|
| 167 |
+
elif metric == 'mean':
|
| 168 |
+
stats = (stats.agg(mean=(
|
| 169 |
+
(t1.geom.intersection(t2.geom).area() / t1.geom.area() * t2.value)
|
| 170 |
+
.sum().coalesce(0).round(3))))
|
| 171 |
+
else:
|
| 172 |
+
print('Select a metric.')
|
| 173 |
+
return
|
| 174 |
+
##### for some ACE data, nonconserved areas don't get captured, so we assign it a 0
|
| 175 |
+
##### only used this for ACE data + nonconserved.
|
| 176 |
+
# left join to keep all sub_ids
|
| 177 |
+
# non_overlapping = t1.anti_join(stats, 'sub_id')
|
| 178 |
+
# zero rows for non-overlapping sub_ids
|
| 179 |
+
# if metric == 'overlap':
|
| 180 |
+
# zeros = (non_overlapping
|
| 181 |
+
# .mutate(overlap = 0)
|
| 182 |
+
# .cast({'overlap':'float64'})
|
| 183 |
+
# )
|
| 184 |
+
# elif metric == 'mean':
|
| 185 |
+
# zeros = (non_overlapping
|
| 186 |
+
# .mutate(mean = 0)
|
| 187 |
+
# .cast({'mean':'float64'})
|
| 188 |
+
# )
|
| 189 |
+
# stats = stats.union(zeros)
|
| 190 |
+
return stats
|
| 191 |
+
|
| 192 |
+
|