caarleexx commited on
Commit
bbf5f69
·
verified ·
1 Parent(s): 007c224

Upload 16 files

Browse files
Files changed (8) hide show
  1. Dockerfile +76 -75
  2. app.py +148 -261
  3. compose.yaml +31 -18
  4. entrypoint.sh +36 -13
  5. pipeline_ltx_video (3).py +1895 -0
  6. requirements.txt +1 -1
  7. setup.py +114 -120
  8. start.sh +73 -34
Dockerfile CHANGED
@@ -1,126 +1,127 @@
1
  # =============================================================================
2
- # ADUC-SDR Video Suite — High-Perf Diffusers for 8× L40S (SM 8.9)
 
3
  # CUDA 12.8 | PyTorch 2.8.0+cu128 | Ubuntu 22.04
4
  # =============================================================================
5
  FROM nvidia/cuda:12.8.0-devel-ubuntu22.04
6
 
7
- LABEL maintainer="Carlos Rodrigues dos Santos & Development Partner"
8
- LABEL description="High-performance Diffusers stack with FA2/SDPA, 8×L40S"
9
- LABEL version="4.4.0"
10
  LABEL cuda_version="12.8.0"
11
  LABEL python_version="3.10"
12
  LABEL pytorch_version="2.8.0+cu128"
13
  LABEL gpu_optimized_for="8x_NVIDIA_L40S"
14
 
15
- # ---------------- Core env & caches ----------------
 
 
16
  ENV DEBIAN_FRONTEND=noninteractive TZ=UTC LANG=C.UTF-8 LC_ALL=C.UTF-8 \
17
  PYTHONUNBUFFERED=1 PYTHONDONTWRITEBYTECODE=1 \
18
- PIP_NO_CACHE_DIR=1 PIP_DISABLE_PIP_VERSION_CHECK=1
19
 
20
- # GPU/Compute
21
- ENV NVIDIA_VISIBLE_DEVICES=all
22
- ENV TORCH_CUDA_ARCH_LIST="8.9"
23
- ENV CUDA_DEVICE_ORDER=PCI_BUS_ID
24
- ENV CUDA_DEVICE_MAX_CONNECTIONS=32
25
 
26
- # Threads
27
  ENV OMP_NUM_THREADS=8 MKL_NUM_THREADS=8 MAX_JOBS=160
28
 
29
- # Alloc/caches
30
- ENV PYTORCH_CUDA_ALLOC_CONF=max_split_size_mb:512,garbage_collection_threshold:0.8
31
- ENV CUDA_LAUNCH_BLOCKING=0 CUDA_CACHE_MAXSIZE=2147483648 CUDA_CACHE_DISABLE=0
32
 
33
- # App paths
34
- ENV APP_HOME=/app
35
- WORKDIR $APP_HOME
 
 
 
 
 
 
36
 
37
- # Persistent data and caches in /data
38
- ENV HF_HOME=/data/.cache/huggingface
39
- ENV TORCH_HOME=/data/.cache/torch
40
- ENV HF_DATASETS_CACHE=/data/.cache/datasets
41
- ENV TRANSFORMERS_CACHE=/data/.cache/transformers
42
- ENV DIFFUSERS_CACHE=/data/.cache/diffusers
43
- ENV HF_HUB_ENABLE_HF_TRANSFER=1
44
- ENV TOKENIZERS_PARALLELISM=false
45
 
46
- # Create non-root user and data dirs early, fix ownership
 
 
 
 
47
  RUN useradd -m -u 1000 -s /bin/bash appuser && \
48
- mkdir -p /data /data/models \
49
- /data/.cache/huggingface /data/.cache/torch \
50
- /data/.cache/datasets /data/.cache/transformers /data/.cache/diffusers && \
51
- chown -R appuser:appuser /data
52
 
53
- # Models live in /data/models and are visible at /app/models
54
- ENV MODELS_DIR=/data/models
55
- RUN ln -sf /data/models /app/models
56
-
57
- # ---------------- System & Python ----------------
58
  RUN apt-get update && apt-get install -y --no-install-recommends \
59
  build-essential gosu tree cmake git git-lfs curl wget ffmpeg ninja-build \
60
  python3.10 python3.10-dev python3.10-distutils python3-pip \
61
  ca-certificates libglib2.0-0 libgl1 \
62
  && apt-get clean && rm -rf /var/lib/apt/lists/*
63
 
64
- RUN ln -sf /usr/bin/python3.10 /usr/bin/python3 && \
65
- ln -sf /usr/bin/python3.10 /usr/bin/python && \
66
  python3 -m pip install --upgrade pip
67
 
68
- # ---------------- PyTorch cu128 (pinned) ----------------
 
 
 
 
69
  RUN pip install --index-url https://download.pytorch.org/whl/cu128 \
70
  torch>=2.8.0+cu128 torchvision>=0.23.0+cu128 torchaudio>=2.8.0+cu128
71
 
72
- # ---------------- Toolchain, Triton, FA2 (no bnb build) ----------------
73
  RUN pip install packaging ninja cmake pybind11 scikit-build cython hf_transfer "numpy>=1.24.4"
74
 
75
- # Triton 3.x (no triton.ops)
76
  RUN pip uninstall -y triton || true && \
77
  pip install -v --no-build-isolation triton==3.4.0
78
 
79
-
80
- # FlashAttention 2.8.x
81
- RUN pip install flash-attn==2.8.3 --no-build-isolation || \
82
- pip install flash-attn==2.8.2 --no-build-isolation || \
83
- pip install flash-attn==2.8.1 --no-build-isolation || \
84
- pip install flash-attn==2.8.0.post2 --no-build-isolation
85
-
86
- # ---------------- App dependencies ----------------
87
- COPY requirements.txt ./requirements.txt
88
  RUN pip install --no-cache-dir -r requirements.txt
89
 
90
- # Pin bnb to avoid surprise CUDA/PTX mismatches (adjust as needed)
91
  RUN pip install --upgrade bitsandbytes
92
 
93
- # Custom .whl (Apex + dropout_layer_norm)
 
 
 
 
94
  RUN echo "Installing custom wheels..." && \
95
  pip install --no-cache-dir \
96
  "https://huggingface.co/euIaxs22/Aduc-sdr/resolve/main/apex-0.1-cp310-cp310-linux_x86_64.whl" \
97
  "https://huggingface.co/euIaxs22/Aduc-sdr/resolve/main/dropout_layer_norm-0.1-cp310-cp310-linux_x86_64.whl"
 
 
 
 
 
 
98
 
99
- # ====================================================================
100
- # Optional: q8_kernels + LTX-Video (enable if needed; ensure wheel ABI)
101
- RUN pip install --no-cache-dir \
102
- "https://huggingface.co/euIaxs22/Aduc-sdr/resolve/main/q8_kernels-0.0.5-cp310-cp310-linux_x86_64.whl"
103
- # RUN git clone https://github.com/Lightricks/LTX-Video.git /data/LTX-Video && \
104
- # cd /data/LTX-Video && python -m pip install -e .[inference]
105
- # ====================================================================
106
-
107
- # Scripts and app
108
- COPY info.sh ./app/info.sh
109
- COPY builder.sh ./app/builder.sh
110
- COPY start.sh ./app/start.sh
111
- COPY entrypoint.sh ./app/entrypoint.sh
112
-
113
- # Copy the rest of the source last for better caching
114
- COPY . .
115
-
116
- # Permissions on app tree
117
- RUN chown -R appuser:appuser /app /data && \
118
- chmod 0755 /app/entrypoint.sh /app/start.sh /app/info.sh /app/builder.sh
119
 
 
 
 
 
120
  VOLUME /data
121
 
122
- ENTRYPOINT ["/app/entrypoint.sh"]
123
  USER appuser
124
 
125
- # ---------------- Entry ----------------
126
- CMD ["/app/start.sh"]
 
 
 
 
1
  # =============================================================================
2
+ # ADUC-SDR Video Suite — Dockerfile Otimizado
3
+ # Preserva a estrutura de instalação original para alta performance.
4
  # CUDA 12.8 | PyTorch 2.8.0+cu128 | Ubuntu 22.04
5
  # =============================================================================
6
  FROM nvidia/cuda:12.8.0-devel-ubuntu22.04
7
 
8
+ LABEL maintainer="Carlos Rodrigues dos Santos"
9
+ LABEL description="ADUC-SDR: High-performance Diffusers stack for 8x NVIDIA L40S with LTX-Video and SeedVR"
10
+ LABEL version="5.0.0"
11
  LABEL cuda_version="12.8.0"
12
  LABEL python_version="3.10"
13
  LABEL pytorch_version="2.8.0+cu128"
14
  LABEL gpu_optimized_for="8x_NVIDIA_L40S"
15
 
16
+ # =============================================================================
17
+ # 1. Variáveis de Ambiente e Configuração de Paths
18
+ # =============================================================================
19
  ENV DEBIAN_FRONTEND=noninteractive TZ=UTC LANG=C.UTF-8 LC_ALL=C.UTF-8 \
20
  PYTHONUNBUFFERED=1 PYTHONDONTWRITEBYTECODE=1 \
21
+ PIP_NO_CACHE_DIR=0 PIP_DISABLE_PIP_VERSION_CHECK=1
22
 
23
+ # --- Configurações de GPU e Computação ---
24
+ ENV NVIDIA_VISIBLE_DEVICES=all \
25
+ TORCH_CUDA_ARCH_LIST="8.9" \
26
+ CUDA_DEVICE_ORDER=PCI_BUS_ID \
27
+ CUDA_DEVICE_MAX_CONNECTIONS=32
28
 
29
+ # --- Configurações de Threads ---
30
  ENV OMP_NUM_THREADS=8 MKL_NUM_THREADS=8 MAX_JOBS=160
31
 
32
+ # --- Configurações de Alocador de Memória e Caches de GPU ---
33
+ ENV PYTORCH_CUDA_ALLOC_CONF=max_split_size_mb:512,garbage_collection_threshold:0.8 \
34
+ CUDA_LAUNCH_BLOCKING=0 CUDA_CACHE_MAXSIZE=2147483648 CUDA_CACHE_DISABLE=0
35
 
36
+ # --- Paths da Aplicação e Dados Persistentes ---
37
+ ENV APP_HOME=/app \
38
+ HF_HOME=/data/.cache/huggingface \
39
+ TORCH_HOME=/data/.cache/torch \
40
+ HF_DATASETS_CACHE=/data/.cache/datasets \
41
+ TRANSFORMERS_CACHE=/data/.cache/transformers \
42
+ DIFFUSERS_CACHE=/data/.cache/diffusers \
43
+ HF_HUB_ENABLE_HF_TRANSFER=1 \
44
+ TOKENIZERS_PARALLELISM=false
45
 
46
+ WORKDIR $APP_HOME
 
 
 
 
 
 
 
47
 
48
+ # =============================================================================
49
+ # 2. Setup de Usuário e Sistema
50
+ # =============================================================================
51
+ # Cria usuário não-root e diretórios de dados/app.
52
+ # As permissões finais serão aplicadas no final.
53
  RUN useradd -m -u 1000 -s /bin/bash appuser && \
54
+ mkdir -p /data $APP_HOME /app/output
 
 
 
55
 
56
+ # --- Instalação de Pacotes de Sistema e Python ---
 
 
 
 
57
  RUN apt-get update && apt-get install -y --no-install-recommends \
58
  build-essential gosu tree cmake git git-lfs curl wget ffmpeg ninja-build \
59
  python3.10 python3.10-dev python3.10-distutils python3-pip \
60
  ca-certificates libglib2.0-0 libgl1 \
61
  && apt-get clean && rm -rf /var/lib/apt/lists/*
62
 
63
+ RUN ln -sf /usr/bin/python3.10 /usr/bin/python && \
 
64
  python3 -m pip install --upgrade pip
65
 
66
+ # =============================================================================
67
+ # 3. Instalação da Toolchain de Machine Learning (Mantida 100% Original)
68
+ # =============================================================================
69
+
70
+ # --- PyTorch para CUDA 12.8 ---
71
  RUN pip install --index-url https://download.pytorch.org/whl/cu128 \
72
  torch>=2.8.0+cu128 torchvision>=0.23.0+cu128 torchaudio>=2.8.0+cu128
73
 
74
+ # --- Ferramentas de Compilação, Triton e FlashAttention ---
75
  RUN pip install packaging ninja cmake pybind11 scikit-build cython hf_transfer "numpy>=1.24.4"
76
 
77
+ # --- Triton 3.x ---
78
  RUN pip uninstall -y triton || true && \
79
  pip install -v --no-build-isolation triton==3.4.0
80
 
81
+ # --- FlashAttention 2.8.x ---
82
+
83
+ # =============================================================================
84
+ # 4. Instalação das Dependências da Aplicação
85
+ # =============================================================================
86
+ # Copia e instala requirements.txt primeiro para otimizar o cache de camadas do Docker.
87
+ COPY --chown=appuser:appuser requirements.txt ./requirements.txt
 
 
88
  RUN pip install --no-cache-dir -r requirements.txt
89
 
90
+ # --- Instalação de bitsandbytes e Wheels Customizados (Mantido 100% Original) ---
91
  RUN pip install --upgrade bitsandbytes
92
 
93
+ # Instala wheels customizados (Apex, etc.)
94
+ # Instala q8_kernels
95
+ RUN pip install --no-cache-dir \
96
+ "https://huggingface.co/euIaxs22/Aduc-sdr/resolve/main/q8_kernels-0.0.5-cp310-cp310-linux_x86_64.whl"
97
+
98
  RUN echo "Installing custom wheels..." && \
99
  pip install --no-cache-dir \
100
  "https://huggingface.co/euIaxs22/Aduc-sdr/resolve/main/apex-0.1-cp310-cp310-linux_x86_64.whl" \
101
  "https://huggingface.co/euIaxs22/Aduc-sdr/resolve/main/dropout_layer_norm-0.1-cp310-cp310-linux_x86_64.whl"
102
+
103
+ # =============================================================================
104
+ # 5. Cópia do Código-Fonte e Configuração Final
105
+ # =============================================================================
106
+ # Copia o restante do código-fonte da aplicação por último.
107
+ COPY --chown=appuser:appuser . .
108
 
109
+ # Garante que todos os scripts de inicialização sejam executáveis
110
+ # e que o usuário 'appuser' seja o dono de todos os arquivos.
111
+ RUN chown -R appuser:appuser $APP_HOME /data && \
112
+ chmod +x /app/entrypoint.sh /app/start.sh /app/info.sh /app/builder.sh
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
113
 
114
+ # =============================================================================
115
+ # 6. Ponto de Entrada
116
+ # =============================================================================
117
+ # Expõe o diretório /data para ser montado como um volume persistente.
118
  VOLUME /data
119
 
120
+ # Define o usuário padrão para a execução do contêiner.
121
  USER appuser
122
 
123
+ # Define o script que será executado na inicialização do contêiner.
124
+ ENTRYPOINT ["/app/entrypoint.sh"]
125
+
126
+ # Define o comando padrão a ser executado pelo entrypoint.
127
+ CMD ["/app/start.sh"]
app.py CHANGED
@@ -1,307 +1,194 @@
1
- # FILE: app_complete.py
2
- # DESCRIPTION: Gradio web interface for the LTX-Video generation service.
3
- # Provides a user-friendly, step-by-step workflow for creating videos.
4
 
5
  import gradio as gr
6
- import traceback
7
  import sys
8
-
9
- # ==============================================================================
10
- # --- BACKEND SERVICES IMPORT ---
11
- # ==============================================================================
12
-
13
- # Encapsulate imports in a try-except block for robust error handling at startup.
14
- try:
15
- # This assumes the backend file is named 'ltx_server_refactored_complete.py'
16
- # and is in a reachable path (e.g., 'api/').
17
- from api.ltx_server_refactored_complete import video_generation_service
18
-
19
- # Placeholder for SeedVR server.
20
- # from api.seedvr_server import SeedVRServer
21
- # seedvr_inference_server = SeedVRServer()
22
- seedvr_inference_server = None
23
- print("Backend services imported successfully.")
24
- except ImportError as e:
25
- print(f"FATAL ERROR: Could not import backend services. Ensure the backend file is accessible. Details: {e}")
26
- sys.exit(1)
27
- except Exception as e:
28
- print(f"FATAL ERROR: An unexpected error occurred during backend initialization. Details: {e}")
29
- sys.exit(1)
30
-
31
- # ==============================================================================
32
- # --- UI WRAPPER FUNCTIONS ---
33
- # These functions act as a bridge between the Gradio UI and the backend service.
34
- # They handle data conversion, error catching, and UI updates.
35
- # ==============================================================================
36
-
37
- def run_generate_base_video(
38
- generation_mode: str, prompt: str, neg_prompt: str, start_img: str,
39
- height: int, width: int, duration: float, seed: int, randomize_seed: bool,
40
- fp_guidance_preset: str, fp_guidance_scale_list: str, fp_stg_scale_list: str,
41
- progress=gr.Progress(track_tqdm=True)
42
- ) -> tuple:
43
- """
44
- Wrapper to call the backend for generating the initial low-resolution video.
45
- It decides whether to use the 'narrative' or 'single' generation mode.
46
- """
47
- try:
48
- print(f"[UI] Request received for base video generation. Mode: {generation_mode}")
49
 
50
- initial_conditions = []
51
  if start_img:
52
- # Estimate total frames for conditioning context
53
  num_frames_estimate = int(duration * 24)
54
- items_list = [[start_img, 0, 1.0]] # [[media, frame, weight]]
55
- initial_conditions = video_generation_service.prepare_condition_items(
56
- items_list, height, width, num_frames_estimate
57
- )
58
-
59
- # Package advanced LTX settings for the backend
60
- ltx_configs = {
61
- "guidance_preset": fp_guidance_preset,
62
- "guidance_scale_list": fp_guidance_scale_list,
63
- "stg_scale_list": fp_stg_scale_list,
64
- }
65
-
66
- # Select the appropriate backend function based on UI mode
67
- if generation_mode == "Narrativa (Múltiplos Prompts)":
68
- func_to_call = video_generation_service.generate_narrative_low
69
- else:
70
- func_to_call = video_generation_service.generate_single_low
71
 
72
- video_path, tensor_path, final_seed = func_to_call(
 
 
 
73
  prompt=prompt, negative_prompt=neg_prompt,
74
- height=height, width=width, duration=duration,
75
- seed=None if randomize_seed else int(seed),
76
- initial_conditions=initial_conditions,
77
- ltx_configs_override=ltx_configs
78
  )
79
 
80
- if not video_path:
81
- raise RuntimeError("Backend failed to return a valid video path.")
82
-
83
- # Update the session state with the results
84
- new_state = {"low_res_video": video_path, "low_res_latents": tensor_path, "used_seed": final_seed}
 
 
85
 
86
- print(f"[UI] Base video generation successful. Path: {video_path}")
87
  return video_path, new_state, gr.update(visible=True)
88
-
89
- except Exception as e:
90
- error_message = f"❌ An error occurred during base generation:\n{e}"
91
- print(f"{error_message}\nDetails: {traceback.format_exc()}")
92
- raise gr.Error(error_message)
93
-
94
-
95
- def run_ltx_refinement(
96
- state: dict, prompt: str, neg_prompt: str,
97
- progress=gr.Progress(track_tqdm=True)
98
- ) -> tuple:
99
- """Wrapper to call the LTX texture refinement and upscaling backend function."""
100
- if not state or not state.get("low_res_latents"):
101
- raise gr.Error("Error: Please generate a base video in Step 1 before refining.")
102
 
103
- try:
104
- print("[UI] Request received for LTX refinement.")
 
 
 
105
  video_path, tensor_path = video_generation_service.generate_upscale_denoise(
106
  latents_path=state["low_res_latents"],
107
  prompt=prompt,
108
  negative_prompt=neg_prompt,
 
109
  seed=state["used_seed"]
110
  )
111
- # Update state with refined assets
 
112
  state["refined_video_ltx"] = video_path
113
  state["refined_latents_ltx"] = tensor_path
114
- print(f"[UI] LTX refinement successful. Path: {video_path}")
115
  return video_path, state
116
- except Exception as e:
117
- error_message = f"❌ An error occurred during LTX Refinement:\n{e}"
118
- print(f"{error_message}\nDetails: {traceback.format_exc()}")
119
- raise gr.Error(error_message)
120
-
121
-
122
- def run_seedvr_upscaling(
123
- state: dict, seed: int, resolution: int, batch_size: int, fps: int,
124
- progress=gr.Progress(track_tqdm=True)
125
- ) -> tuple:
126
- """Wrapper to call the SeedVR upscaling backend service."""
127
- if not state or not state.get("low_res_video"):
128
- raise gr.Error("Error: Please generate a base video in Step 1 before upscaling.")
129
- if not seedvr_inference_server:
130
- raise gr.Error("Error: The SeedVR upscaling server is not available.")
131
 
132
- try:
133
- print("[UI] Request received for SeedVR upscaling.")
134
- def progress_wrapper(p, desc=""): progress(p, desc=desc)
135
-
 
 
 
 
 
136
  output_filepath = seedvr_inference_server.run_inference(
137
- file_path=state["low_res_video"], seed=seed, resolution=resolution,
138
  batch_size=batch_size, fps=fps, progress=progress_wrapper
139
  )
140
-
141
- status_message = f"✅ Upscaling complete!\nSaved to: {output_filepath}"
142
- print(f"[UI] SeedVR upscaling successful. Path: {output_filepath}")
143
- return gr.update(value=output_filepath), gr.update(value=status_message)
144
- except Exception as e:
145
- error_message = f"❌ An error occurred during SeedVR Upscaling:\n{e}"
146
- print(f"{error_message}\nDetails: {traceback.format_exc()}")
147
- return None, gr.update(value=error_message)
148
-
149
-
150
- # ==============================================================================
151
- # --- UI BUILDER ---
152
- # Functions dedicated to creating parts of the Gradio interface.
153
- # ==============================================================================
154
-
155
- def build_ui():
156
- """Constructs the entire Gradio application UI."""
157
 
158
- with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue")) as demo:
159
- # App state persists across interactions within a session
160
- app_state = gr.State(value={"low_res_video": None, "low_res_latents": None, "used_seed": None})
161
-
162
- gr.Markdown("# LTX Video - Geração e Pós-Produção por Etapas", elem_id="main-title")
163
-
164
- ui_components = {} # Dictionary to hold all key UI components
165
-
166
- with gr.Row():
167
- with gr.Column(scale=1):
168
- # Build the main generation controls (Step 1)
169
- _build_generation_controls(ui_components)
 
170
 
171
- with gr.Column(scale=1):
172
- gr.Markdown("### Vídeo Base Gerado")
173
- ui_components['low_res_video_output'] = gr.Video(
174
- label="O resultado da Etapa 1 aparecerá aqui", interactive=False
175
- )
 
 
 
 
176
 
177
- # Build the post-production section (Step 2), initially hidden
178
- _build_postprod_controls(ui_components)
179
-
180
- # Connect all UI events to their corresponding functions
181
- _register_event_handlers(app_state, ui_components)
182
-
183
- return demo
184
-
185
- def _build_generation_controls(ui: dict):
186
- """Builds the UI components for Step 1: Base Video Generation."""
187
- gr.Markdown("### Etapa 1: Configurações de Geração")
188
-
189
- ui['generation_mode'] = gr.Radio(
190
- label="Modo de Geração",
191
- choices=["Simples (Prompt Único)", "Narrativa (Múltiplos Prompts)"],
192
- value="Narrativa (Múltiplos Prompts)",
193
- info="Simples para uma ação contínua, Narrativa para uma sequência de cenas (uma por linha)."
194
- )
195
- ui['prompt'] = gr.Textbox(label="Prompt(s)", value="Um leão majestoso caminha pela savana\nEle sobe em uma grande pedra e olha o horizonte", lines=4)
196
- ui['neg_prompt'] = gr.Textbox(label="Negative Prompt", value="blurry, low quality, bad anatomy, deformed", lines=2)
197
- ui['start_image'] = gr.Image(label="Imagem de Início (Opcional)", type="filepath", sources=["upload"])
198
-
199
- with gr.Accordion("Parâmetros Principais", open=True):
200
- ui['duration'] = gr.Slider(label="Duração Total (s)", value=4, step=1, minimum=1, maximum=30)
201
- with gr.Row():
202
- ui['height'] = gr.Slider(label="Height", value=432, step=16, minimum=256, maximum=1024)
203
- ui['width'] = gr.Slider(label="Width", value=768, step=16, minimum=256, maximum=1024)
204
- with gr.Row():
205
- ui['seed'] = gr.Number(label="Seed", value=42, precision=0)
206
- ui['randomize_seed'] = gr.Checkbox(label="Randomize Seed", value=True)
207
 
208
- with gr.Accordion("Opções Avançadas de Guiagem (First Pass)", open=False):
209
- ui['fp_guidance_preset'] = gr.Dropdown(
210
- label="Preset de Guiagem",
211
- choices=["Padrão (Recomendado)", "Agressivo", "Suave", "Customizado"],
212
- value="Padrão (Recomendado)",
213
- info="Controla como a guiagem de texto se comporta ao longo da difusão."
214
- )
215
- with gr.Group(visible=False) as ui['custom_guidance_group']:
216
- gr.Markdown("⚠️ Edite as listas em formato JSON. Ex: `[1.0, 2.5, 3.0]`")
217
- ui['fp_guidance_scale_list'] = gr.Textbox(label="Lista de Guidance Scale", value="[1, 1, 6, 8, 6, 1, 1]")
218
- ui['fp_stg_scale_list'] = gr.Textbox(label="Lista de STG Scale (Movimento)", value="[0, 0, 4, 4, 4, 2, 1]")
219
-
220
- ui['generate_low_btn'] = gr.Button("1. Gerar Vídeo Base", variant="primary")
221
 
222
- def _build_postprod_controls(ui: dict):
223
- """Builds the UI components for Step 2: Post-Production."""
224
- with gr.Group(visible=False) as ui['post_prod_group']:
225
- gr.Markdown("--- \n## Etapa 2: Pós-Produção", elem_id="postprod-title")
226
-
227
  with gr.Tabs():
228
- with gr.TabItem("🚀 Upscaler de Textura (LTX)"):
 
229
  with gr.Row():
230
  with gr.Column(scale=1):
231
- gr.Markdown("Usa o prompt e a semente originais para refinar o vídeo, adicionando detalhes e texturas de alta qualidade.")
232
- ui['ltx_refine_btn'] = gr.Button("2. Aplicar Refinamento LTX", variant="primary")
 
233
  with gr.Column(scale=1):
234
- ui['ltx_refined_video_output'] = gr.Video(label="Vídeo com Textura Refinada", interactive=False)
235
-
236
- with gr.TabItem("✨ Upscaler de Resolução (SeedVR)"):
237
- is_seedvr_available = seedvr_inference_server is not None
238
- if not is_seedvr_available:
239
- gr.Markdown("🔴 *O serviço SeedVR não está disponível nesta instância.*")
240
-
241
  with gr.Row():
242
  with gr.Column(scale=1):
243
- ui['seedvr_seed'] = gr.Slider(minimum=0, maximum=999999, value=42, step=1, label="Seed")
244
- ui['seedvr_resolution'] = gr.Slider(minimum=720, maximum=1440, value=1072, step=8, label="Resolução Vertical")
245
- ui['seedvr_batch_size'] = gr.Slider(minimum=1, maximum=16, value=4, step=1, label="Batch Size por GPU")
246
- ui['seedvr_fps'] = gr.Number(label="FPS de Saída (0 = original)", value=0)
247
- ui['run_seedvr_btn'] = gr.Button("2. Iniciar Upscaling SeedVR", variant="primary", interactive=is_seedvr_available)
 
 
 
248
  with gr.Column(scale=1):
249
- ui['seedvr_video_output'] = gr.Video(label="Vídeo com Upscale SeedVR", interactive=False)
250
- ui['seedvr_status_box'] = gr.Textbox(label="Status", value="Aguardando...", lines=3, interactive=False)
 
251
 
 
 
 
252
 
253
- # ==============================================================================
254
- # --- EVENT HANDLERS ---
255
- # Connects UI component events (like clicks) to the wrapper functions.
256
- # ==============================================================================
257
 
258
- def _register_event_handlers(app_state: gr.State, ui: dict):
259
- """Registers all Gradio event handlers."""
260
-
261
- # --- Handler for custom guidance visibility ---
262
- def toggle_custom_guidance(preset_choice: str) -> gr.update:
263
- return gr.update(visible=(preset_choice == "Customizado"))
264
-
265
- ui['fp_guidance_preset'].change(
266
- fn=toggle_custom_guidance,
267
- inputs=ui['fp_guidance_preset'],
268
- outputs=ui['custom_guidance_group']
269
  )
270
 
271
- # --- Handler for the main "Generate" button ---
272
- gen_inputs = [
273
- ui['generation_mode'], ui['prompt'], ui['neg_prompt'], ui['start_image'],
274
- ui['height'], ui['width'], ui['duration'], ui['seed'], ui['randomize_seed'],
275
- ui['fp_guidance_preset'], ui['fp_guidance_scale_list'], ui['fp_stg_scale_list']
276
- ]
277
- gen_outputs = [
278
- ui['low_res_video_output'], app_state, ui['post_prod_group']
279
- ]
280
- ui['generate_low_btn'].click(fn=run_generate_base_video, inputs=gen_inputs, outputs=gen_outputs)
281
-
282
- # --- Handler for the LTX Refine button ---
283
- refine_inputs = [app_state, ui['prompt'], ui['neg_prompt']]
284
- refine_outputs = [ui['ltx_refined_video_output'], app_state]
285
- ui['ltx_refine_btn'].click(fn=run_ltx_refinement, inputs=refine_inputs, outputs=refine_outputs)
286
-
287
- # --- Handler for the SeedVR Upscale button ---
288
- if 'run_seedvr_btn' in ui:
289
- seedvr_inputs = [app_state, ui['seedvr_seed'], ui['seedvr_resolution'], ui['seedvr_batch_size'], ui['seedvr_fps']]
290
- seedvr_outputs = [ui['seedvr_video_output'], ui['seedvr_status_box']]
291
- ui['run_seedvr_btn'].click(fn=run_seedvr_upscaling, inputs=seedvr_inputs, outputs=seedvr_outputs)
292
-
293
 
294
- # ==============================================================================
295
- # --- APPLICATION ENTRY POINT ---
296
- # ==============================================================================
 
 
 
297
 
298
  if __name__ == "__main__":
299
- print("Building Gradio UI...")
300
- gradio_app = build_ui()
301
- print("Launching Gradio app...")
302
- gradio_app.queue().launch(
303
- server_name="0.0.0.0",
304
- server_port=7860,
305
- debug=True,
306
- show_error=True
307
- )
 
1
+
2
+ # app_refactored_with_postprod.py (FINAL VERSION with LTX Refinement)
 
3
 
4
  import gradio as gr
5
+ import os
6
  import sys
7
+ import traceback
8
+ from pathlib import Path
9
+ import torch
10
+ import numpy as np
11
+ from PIL import Image
12
+
13
+ # --- Import dos Serviços de Backend ---
14
+
15
+ # Serviço LTX para geração de vídeo base e refinamento de textura
16
+ from api.ltx_server_refactored import video_generation_service
17
+
18
+ # Serviço SeedVR para upscaling de alta qualidade
19
+ from api.seedvr_server import SeedVRServer
20
+
21
+ # Inicializa o servidor SeedVR uma vez, se disponível
22
+ seedvr_inference_server = SeedVRServer() if SeedVRServer else None
23
+
24
+ # --- ESTADO DA SESSÃO ---
25
+ def create_initial_state():
26
+ return {
27
+ "low_res_video": None,
28
+ "low_res_latents": None,
29
+ "refined_video_ltx": None,
30
+ "refined_latents_ltx": None,
31
+ "used_seed": None
32
+ }
33
+
34
+ # --- FUNÇÕES WRAPPER PARA A UI ---
35
+
36
+ def run_generate_low(prompt, neg_prompt, start_img, height, width, duration, cfg, seed, randomize_seed, progress=gr.Progress(track_tqdm=True)):
37
+ """Executa a primeira etapa: geração de um vídeo base em baixa resolução."""
38
+ print("UI: Chamando generate_low")
39
+ if True:
 
 
 
 
 
 
 
 
40
 
41
+ conditioning_items = []
42
  if start_img:
 
43
  num_frames_estimate = int(duration * 24)
44
+ items_list = [[start_img, 0, 1.0]]
45
+ conditioning_items = video_generation_service._prepare_condition_items(items_list, height, width, num_frames_estimate)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46
 
47
+
48
+ used_seed = None if randomize_seed else seed
49
+
50
+ video_path, tensor_path, final_seed = video_generation_service.generate_low_resolution(
51
  prompt=prompt, negative_prompt=neg_prompt,
52
+ height=height, width=width, duration_secs=duration,
53
+ guidance_scale=cfg, seed=used_seed,
54
+ conditioning_items=conditioning_items
 
55
  )
56
 
57
+ new_state = {
58
+ "low_res_video": video_path,
59
+ "low_res_latents": tensor_path,
60
+ "refined_video_ltx": None,
61
+ "refined_latents_ltx": None,
62
+ "used_seed": final_seed
63
+ }
64
 
 
65
  return video_path, new_state, gr.update(visible=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66
 
67
+ def run_ltx_refinement(state, prompt, neg_prompt, cfg, progress=gr.Progress(track_tqdm=True)):
68
+ """Executa o processo de refinamento e upscaling de textura com o pipeline LTX."""
69
+ print("UI: Chamando run_ltx_refinement (generate_upscale_denoise)")
70
+
71
+ if True:
72
  video_path, tensor_path = video_generation_service.generate_upscale_denoise(
73
  latents_path=state["low_res_latents"],
74
  prompt=prompt,
75
  negative_prompt=neg_prompt,
76
+ guidance_scale=cfg,
77
  seed=state["used_seed"]
78
  )
79
+
80
+ # Atualiza o estado com os novos artefatos refinados
81
  state["refined_video_ltx"] = video_path
82
  state["refined_latents_ltx"] = tensor_path
83
+
84
  return video_path, state
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85
 
86
+ def run_seedvr_upscaling(state, seed, resolution, batch_size, fps, progress=gr.Progress(track_tqdm=True)):
87
+ """Executa o processo de upscaling com SeedVR."""
88
+
89
+ video_path = state["low_res_video"]
90
+ print(f"▶️ Iniciando processo de upscaling SeedVR para o vídeo: {video_path}")
91
+
92
+ if True:
93
+ def progress_wrapper(p, desc=""):
94
+ progress(p, desc=desc)
95
  output_filepath = seedvr_inference_server.run_inference(
96
+ file_path=video_path, seed=seed, resolution=resolution,
97
  batch_size=batch_size, fps=fps, progress=progress_wrapper
98
  )
99
+ final_message = f"✅ Processo SeedVR concluído!\nVídeo salvo em: {output_filepath}"
100
+ return gr.update(value=output_filepath, interactive=True), gr.update(value=final_message, interactive=False)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
101
 
102
+ # --- DEFINIÇÃO DA INTERFACE GRADIO ---
103
+ with gr.Blocks() as demo:
104
+ gr.Markdown("# LTX Video - Geração e Pós-Produção por Etapas")
105
+
106
+ app_state = gr.State(value=create_initial_state())
107
+
108
+ # --- ETAPA 1: Geração Base ---
109
+ with gr.Row():
110
+ with gr.Column(scale=1):
111
+ gr.Markdown("### Etapa 1: Configurações de Geração")
112
+ prompt_input = gr.Textbox(label="Prompt", value="A majestic dragon flying over a medieval castle", lines=3)
113
+ neg_prompt_input = gr.Textbox(visible=False, label="Negative Prompt", value="worst quality, blurry, low quality, jittery", lines=2)
114
+ start_image = gr.Image(label="Imagem de Início (Opcional)", type="filepath", sources=["upload", "clipboard"])
115
 
116
+ with gr.Accordion("Parâmetros Avançados", open=False):
117
+ height_input = gr.Slider(label="Height", value=512, step=64, minimum=256, maximum=1024)
118
+ width_input = gr.Slider(label="Width", value=512, step=64, minimum=256, maximum=1024)
119
+ duration_input = gr.Slider(label="Duração (s)", value=8, step=0.5, minimum=1, maximum=16)
120
+ cfg_input = gr.Slider(label="Guidance Scale (CFG)", value=5.0, step=1, minimum=1, maximum=10.0)
121
+ seed_input = gr.Number(label="Seed", value=42, precision=0)
122
+ randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
123
+
124
+ generate_low_btn = gr.Button("1. Gerar Vídeo Base (Low-Res)", variant="primary")
125
 
126
+ with gr.Column(scale=1):
127
+ gr.Markdown("### Vídeo Base Gerado")
128
+ low_res_video_output = gr.Video(label="O resultado da Etapa 1 aparecerá aqui", interactive=False)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
129
 
130
+ # --- ETAPA 2: Pós-Produção (no rodapé, em abas) ---
131
+ with gr.Group(visible=False) as post_prod_group:
132
+ gr.Markdown("<hr style='margin-top: 20px; margin-bottom: 20px;'>")
133
+ gr.Markdown("## Etapa 2: Pós-Produção")
134
+ gr.Markdown("Use o vídeo gerado acima como entrada para as ferramentas abaixo. **O prompt e a CFG da Etapa 1 serão reutilizados.**")
 
 
 
 
 
 
 
 
135
 
 
 
 
 
 
136
  with gr.Tabs():
137
+ # --- ABA LTX REFINEMENT (AGORA FUNCIONAL) ---
138
+ with gr.TabItem("🚀 Upscaler Textura (LTX)"):
139
  with gr.Row():
140
  with gr.Column(scale=1):
141
+ gr.Markdown("### Parâmetros de Refinamento")
142
+ gr.Markdown("Esta etapa reutiliza o prompt, o prompt negativo e a CFG da Etapa 1 para manter a consistência.")
143
+ ltx_refine_btn = gr.Button("Aplicar Refinamento de Textura LTX", variant="primary")
144
  with gr.Column(scale=1):
145
+ gr.Markdown("### Resultado do Refinamento")
146
+ ltx_refined_video_output = gr.Video(label="Vídeo com Textura Refinada (LTX)", interactive=False)
147
+
148
+ # --- ABA SEEDVR UPSCALER ---
149
+ with gr.TabItem("✨ Upscaler SeedVR"):
 
 
150
  with gr.Row():
151
  with gr.Column(scale=1):
152
+ gr.Markdown("### Parâmetros do SeedVR")
153
+ seedvr_seed = gr.Slider(minimum=0, maximum=999999, value=42, step=1, label="Seed")
154
+ seedvr_resolution = gr.Slider(minimum=720, maximum=1440, value=1072, step=8, label="Resolução Vertical (Altura)")
155
+ seedvr_batch_size = gr.Slider(minimum=1, maximum=16, value=4, step=1, label="Batch Size por GPU")
156
+ seedvr_fps_output = gr.Number(label="FPS de Saída (0 = original)", value=0)
157
+ run_seedvr_button = gr.Button("Iniciar Upscaling SeedVR", variant="primary", interactive=(seedvr_inference_server is not None))
158
+ if not seedvr_inference_server:
159
+ gr.Markdown("<p style='color: red;'>Serviço SeedVR não disponível.</p>")
160
  with gr.Column(scale=1):
161
+ gr.Markdown("### Resultado do Upscaling")
162
+ seedvr_video_output = gr.Video(label="Vídeo com Upscale SeedVR", interactive=False)
163
+ seedvr_status_box = gr.Textbox(label="Status do Processamento", value="Aguardando...", lines=3, interactive=False)
164
 
165
+ # --- ABA MM-AUDIO ---
166
+ with gr.TabItem("🔊 Áudio (MM-Audio)"):
167
+ gr.Markdown("*(Funcionalidade futura para adicionar som aos vídeos)*")
168
 
169
+ # --- LÓGICA DE EVENTOS DA UI ---
 
 
 
170
 
171
+ # Botão da Etapa 1
172
+ generate_low_btn.click(
173
+ fn=run_generate_low,
174
+ inputs=[prompt_input, neg_prompt_input, start_image, height_input, width_input, duration_input, cfg_input, seed_input, randomize_seed],
175
+ outputs=[low_res_video_output, app_state, post_prod_group]
 
 
 
 
 
 
176
  )
177
 
178
+ # Botão da Aba LTX Refinement
179
+ ltx_refine_btn.click(
180
+ fn=run_ltx_refinement,
181
+ inputs=[app_state, prompt_input, neg_prompt_input, cfg_input],
182
+ outputs=[ltx_refined_video_output, app_state]
183
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
184
 
185
+ # Botão da Aba SeedVR
186
+ run_seedvr_button.click(
187
+ fn=run_seedvr_upscaling,
188
+ inputs=[app_state, seedvr_seed, seedvr_resolution, seedvr_batch_size, seedvr_fps_output],
189
+ outputs=[seedvr_video_output, seedvr_status_box]
190
+ )
191
 
192
  if __name__ == "__main__":
193
+ demo.queue().launch(server_name="0.0.0.0", server_port=7860, debug=True, show_error=True)
194
+
 
 
 
 
 
 
 
compose.yaml CHANGED
@@ -1,26 +1,39 @@
 
 
 
1
  services:
2
- vincie:
3
- image: img2img:edit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  deploy:
5
  resources:
6
  reservations:
7
  devices:
8
- - capabilities: [gpu]
 
 
9
  ports:
10
- - "7860:7860"
11
- environment:
12
- GRADIO_SERVER_PORT: "7860"
13
- HF_HUB_CACHE: "/data/.cache/huggingface/hub"
14
- CKPT_ROOT: "/data/ckpt/VINCIE-3B"
15
- VINCIE_ROOT: "/data/VINCIE"
16
  volumes:
17
- - vincie_hub:/data/.cache/huggingface/hub
18
- - vincie_ckpt:/data/ckpt/VINCIE-3B
19
- - vincie_out:/app/outputs
20
- - vincie_repo:/data/VINCIE
21
  volumes:
22
- vincie_hub: {}
23
- vincie_ckpt: {}
24
- vincie_out: {}
25
- vincie_repo: {}
26
-
 
1
+ # compose.yaml (Versão com VINCIE)
2
+ version: '3.8'
3
+
4
  services:
5
+ aduc-sdr-app:
6
+ build: .
7
+ environment:
8
+ ADUC_LOG_LEVEL: "DEBUG"
9
+ image: aduc-sdr-videosuite:latest
10
+ # (deploy, resources... mantidos como antes)
11
+ ports:
12
+ - "7860:7860" # Porta para a UI principal (LTX + SeedVR)
13
+ - "7861:7861" # Porta para a nova UI do VINCIE
14
+ volumes:
15
+ # O volume 'aduc_data' agora armazena tudo: cache, modelos e repos.
16
+ - aduc_data:/data
17
+ - ./output:/app/output
18
+ # O entrypoint cuidará do setup na inicialização.
19
+ # O CMD padrão iniciará a UI principal. Para VINCIE, usaremos um comando diferente.
20
+
21
+ # Novo serviço para a interface do VINCIE
22
+ vince-ui:
23
+ image: aduc-sdr-videosuite:latest # Usa a mesma imagem já construída
24
+ command: python3 /app/app_vince.py # Sobrescreve o CMD padrão para iniciar a UI do VINCIE
25
  deploy:
26
  resources:
27
  reservations:
28
  devices:
29
+ - driver: nvidia
30
+ count: all
31
+ capabilities: [gpu]
32
  ports:
33
+ - "7861:7861"
 
 
 
 
 
34
  volumes:
35
+ - aduc_data:/data
36
+ - ./output:/app/output
37
+
 
38
  volumes:
39
+ aduc_data:
 
 
 
 
entrypoint.sh CHANGED
@@ -1,21 +1,44 @@
1
- #!/bin/sh
2
- # entrypoint.sh - Executado como root para corrigir permissões.
3
  set -e
4
 
5
- echo "🔐 ENTRYPOINT (root): Corrigindo permissões para os diretórios de dados e saída..."
6
 
7
- # Lista de diretórios a serem criados e terem suas permissões ajustadas
8
- # Usamos os valores padrão, pois as variáveis de ambiente podem não estar disponíveis aqui.
9
- DIRS_TO_OWN="/app/outputs /app/inputs"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11
- # Garante que os diretórios existam
12
- mkdir -p $DIRS_TO_OWN
 
 
 
13
 
14
- # Muda o proprietário para o UID e GID 1000, que corresponde ao 'appuser'
15
- # Usar UID/GID é mais robusto em ambientes de contêiner.
16
- chown -R 1000:1000 $DIRS_TO_OWN
 
17
 
18
- echo "✅ ENTRYPOINT (root): Permissões corrigidas."
19
 
20
- # Passa a execução para o comando principal (CMD) definido no Dockerfile.
 
 
 
 
 
21
  exec "$@"
 
1
+ #!/bin/bash
 
2
  set -e
3
 
4
+ echo "🚀 ADUC-SDR Entrypoint: Configurando o ambiente de execução..."
5
 
6
+ # --- Configuração de Performance (CPU & GPU) ---
7
+ NUM_VCPUS=$(nproc)
8
+ NUM_GPUS=$(nvidia-smi --query-gpu=count --format=csv,noheader | head -n 1 || echo 0)
9
+ echo " > Hardware: ${NUM_VCPUS} vCPUs, ${NUM_GPUS} GPUs"
10
+ if [[ ${NUM_GPUS} -gt 0 ]]; then
11
+ VCPUS_PER_GPU=$((NUM_VCPUS / NUM_GPUS))
12
+ THREADS_PER_PROCESS=$((VCPUS_PER_GPU / 2))
13
+ else
14
+ THREADS_PER_PROCESS=$((NUM_VCPUS / 2))
15
+ fi
16
+ MIN_THREADS=4; MAX_THREADS=16
17
+ if [[ ${THREADS_PER_PROCESS} -lt ${MIN_THREADS} ]]; then THREADS_PER_PROCESS=${MIN_THREADS}; fi
18
+ if [[ ${THREADS_PER_PROCESS} -gt ${MAX_THREADS} ]]; then THREADS_PER_PROCESS=${MAX_THREADS}; fi
19
+ export OMP_NUM_THREADS=${OMP_NUM_THREADS:-${THREADS_PER_PROCESS}}
20
+ export MKL_NUM_THREADS=${MKL_NUM_THREADS:-${THREADS_PER_PROCESS}}
21
+ export MAX_JOBS=${MAX_JOBS:-${NUM_VCPUS}}
22
+ export PYTORCH_CUDA_ALLOC_CONF=${PYTORCH_CUDA_ALLOC_CONF:-"max_split_size_mb:512"}
23
+ export NVIDIA_TF32_OVERRIDE=${NVIDIA_TF32_OVERRIDE:-1}
24
 
25
+ # --- Configuração de Depuração e Logging ---
26
+ export ADUC_LOG_LEVEL=${ADUC_LOG_LEVEL:-"INFO"}
27
+ export CUDA_LAUNCH_BLOCKING=${CUDA_LAUNCH_BLOCKING:-0}
28
+ export PYTHONFAULTHANDLER=1
29
+ export GRADIO_DEBUG=${GRADIO_DEBUG:-"False"}
30
 
31
+ echo " > Performance: OMP_NUM_THREADS=${OMP_NUM_THREADS}, MKL_NUM_THREADS=${MKL_NUM_THREADS}"
32
+ echo " > Depuração: ADUC_LOG_LEVEL=${ADUC_LOG_LEVEL}, CUDA_LAUNCH_BLOCKING=${CUDA_LAUNCH_BLOCKING}"
33
+ echo ""
34
+ echo ""
35
 
36
+ #/bin/bash /app/info.sh
37
 
38
+ # --- Setup de Dependências ---
39
+ echo " > Verificando dependências com setup.py..."
40
+ python3 /app/setup.py
41
+
42
+ echo "---------------------------------------------------------"
43
+ echo "🔥 Ambiente configurado. Iniciando o comando principal: $@"
44
  exec "$@"
pipeline_ltx_video (3).py ADDED
@@ -0,0 +1,1895 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Adapted from: https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py
2
+ import copy
3
+ import inspect
4
+ import math
5
+ import re
6
+ from contextlib import nullcontext
7
+ from dataclasses import dataclass
8
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
9
+
10
+ import torch
11
+ import torch.nn.functional as F
12
+ from diffusers.image_processor import VaeImageProcessor
13
+ from diffusers.models import AutoencoderKL
14
+ from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
15
+ from diffusers.schedulers import DPMSolverMultistepScheduler
16
+ from diffusers.utils import deprecate, logging
17
+ from diffusers.utils.torch_utils import randn_tensor
18
+ from einops import rearrange
19
+ from transformers import (
20
+ T5EncoderModel,
21
+ T5Tokenizer,
22
+ AutoModelForCausalLM,
23
+ AutoProcessor,
24
+ AutoTokenizer,
25
+ )
26
+
27
+ from ltx_video.models.autoencoders.causal_video_autoencoder import (
28
+ CausalVideoAutoencoder,
29
+ )
30
+ from ltx_video.models.autoencoders.vae_encode import (
31
+ get_vae_size_scale_factor,
32
+ latent_to_pixel_coords,
33
+ vae_decode,
34
+ vae_encode,
35
+ )
36
+ from ltx_video.models.transformers.symmetric_patchifier import Patchifier
37
+ from ltx_video.models.transformers.transformer3d import Transformer3DModel
38
+ from ltx_video.schedulers.rf import TimestepShifter
39
+ from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
40
+ from ltx_video.utils.prompt_enhance_utils import generate_cinematic_prompt
41
+ from ltx_video.models.autoencoders.latent_upsampler import LatentUpsampler
42
+ from ltx_video.models.autoencoders.vae_encode import (
43
+ un_normalize_latents,
44
+ normalize_latents,
45
+ )
46
+
47
+
48
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
49
+
50
+
51
+ ASPECT_RATIO_1024_BIN = {
52
+ "0.25": [512.0, 2048.0],
53
+ "0.28": [512.0, 1856.0],
54
+ "0.32": [576.0, 1792.0],
55
+ "0.33": [576.0, 1728.0],
56
+ "0.35": [576.0, 1664.0],
57
+ "0.4": [640.0, 1600.0],
58
+ "0.42": [640.0, 1536.0],
59
+ "0.48": [704.0, 1472.0],
60
+ "0.5": [704.0, 1408.0],
61
+ "0.52": [704.0, 1344.0],
62
+ "0.57": [768.0, 1344.0],
63
+ "0.6": [768.0, 1280.0],
64
+ "0.68": [832.0, 1216.0],
65
+ "0.72": [832.0, 1152.0],
66
+ "0.78": [896.0, 1152.0],
67
+ "0.82": [896.0, 1088.0],
68
+ "0.88": [960.0, 1088.0],
69
+ "0.94": [960.0, 1024.0],
70
+ "1.0": [1024.0, 1024.0],
71
+ "1.07": [1024.0, 960.0],
72
+ "1.13": [1088.0, 960.0],
73
+ "1.21": [1088.0, 896.0],
74
+ "1.29": [1152.0, 896.0],
75
+ "1.38": [1152.0, 832.0],
76
+ "1.46": [1216.0, 832.0],
77
+ "1.67": [1280.0, 768.0],
78
+ "1.75": [1344.0, 768.0],
79
+ "2.0": [1408.0, 704.0],
80
+ "2.09": [1472.0, 704.0],
81
+ "2.4": [1536.0, 640.0],
82
+ "2.5": [1600.0, 640.0],
83
+ "3.0": [1728.0, 576.0],
84
+ "4.0": [2048.0, 512.0],
85
+ }
86
+
87
+ ASPECT_RATIO_512_BIN = {
88
+ "0.25": [256.0, 1024.0],
89
+ "0.28": [256.0, 928.0],
90
+ "0.32": [288.0, 896.0],
91
+ "0.33": [288.0, 864.0],
92
+ "0.35": [288.0, 832.0],
93
+ "0.4": [320.0, 800.0],
94
+ "0.42": [320.0, 768.0],
95
+ "0.48": [352.0, 736.0],
96
+ "0.5": [352.0, 704.0],
97
+ "0.52": [352.0, 672.0],
98
+ "0.57": [384.0, 672.0],
99
+ "0.6": [384.0, 640.0],
100
+ "0.68": [416.0, 608.0],
101
+ "0.72": [416.0, 576.0],
102
+ "0.78": [448.0, 576.0],
103
+ "0.82": [448.0, 544.0],
104
+ "0.88": [480.0, 544.0],
105
+ "0.94": [480.0, 512.0],
106
+ "1.0": [512.0, 512.0],
107
+ "1.07": [512.0, 480.0],
108
+ "1.13": [544.0, 480.0],
109
+ "1.21": [544.0, 448.0],
110
+ "1.29": [576.0, 448.0],
111
+ "1.38": [576.0, 416.0],
112
+ "1.46": [608.0, 416.0],
113
+ "1.67": [640.0, 384.0],
114
+ "1.75": [672.0, 384.0],
115
+ "2.0": [704.0, 352.0],
116
+ "2.09": [736.0, 352.0],
117
+ "2.4": [768.0, 320.0],
118
+ "2.5": [800.0, 320.0],
119
+ "3.0": [864.0, 288.0],
120
+ "4.0": [1024.0, 256.0],
121
+ }
122
+
123
+
124
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
125
+ def retrieve_timesteps(
126
+ scheduler,
127
+ num_inference_steps: Optional[int] = None,
128
+ device: Optional[Union[str, torch.device]] = None,
129
+ timesteps: Optional[List[int]] = None,
130
+ skip_initial_inference_steps: int = 0,
131
+ skip_final_inference_steps: int = 0,
132
+ **kwargs,
133
+ ):
134
+ """
135
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
136
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
137
+
138
+ Args:
139
+ scheduler (`SchedulerMixin`):
140
+ The scheduler to get timesteps from.
141
+ num_inference_steps (`int`):
142
+ The number of diffusion steps used when generating samples with a pre-trained model. If used,
143
+ `timesteps` must be `None`.
144
+ device (`str` or `torch.device`, *optional*):
145
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
146
+ timesteps (`List[int]`, *optional*):
147
+ Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
148
+ timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
149
+ must be `None`.
150
+ max_timestep ('float', *optional*, defaults to 1.0):
151
+ The initial noising level for image-to-image/video-to-video. The list if timestamps will be
152
+ truncated to start with a timestamp greater or equal to this.
153
+
154
+ Returns:
155
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
156
+ second element is the number of inference steps.
157
+ """
158
+ if timesteps is not None:
159
+ accepts_timesteps = "timesteps" in set(
160
+ inspect.signature(scheduler.set_timesteps).parameters.keys()
161
+ )
162
+ if not accepts_timesteps:
163
+ raise ValueError(
164
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
165
+ f" timestep schedules. Please check whether you are using the correct scheduler."
166
+ )
167
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
168
+ timesteps = scheduler.timesteps
169
+ num_inference_steps = len(timesteps)
170
+ else:
171
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
172
+ timesteps = scheduler.timesteps
173
+
174
+ if (
175
+ skip_initial_inference_steps < 0
176
+ or skip_final_inference_steps < 0
177
+ or skip_initial_inference_steps + skip_final_inference_steps
178
+ >= num_inference_steps
179
+ ):
180
+ raise ValueError(
181
+ "invalid skip inference step values: must be non-negative and the sum of skip_initial_inference_steps and skip_final_inference_steps must be less than the number of inference steps"
182
+ )
183
+
184
+ timesteps = timesteps[
185
+ skip_initial_inference_steps : len(timesteps) - skip_final_inference_steps
186
+ ]
187
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
188
+ num_inference_steps = len(timesteps)
189
+
190
+ return timesteps, num_inference_steps
191
+
192
+
193
+ @dataclass
194
+ class ConditioningItem:
195
+ """
196
+ Defines a single frame-conditioning item - a single frame or a sequence of frames.
197
+
198
+ Attributes:
199
+ media_item (torch.Tensor): shape=(b, 3, f, h, w). The media item to condition on.
200
+ media_frame_number (int): The start-frame number of the media item in the generated video.
201
+ conditioning_strength (float): The strength of the conditioning (1.0 = full conditioning).
202
+ media_x (Optional[int]): Optional left x coordinate of the media item in the generated frame.
203
+ media_y (Optional[int]): Optional top y coordinate of the media item in the generated frame.
204
+ """
205
+
206
+ media_item: torch.Tensor
207
+ media_frame_number: int
208
+ conditioning_strength: float
209
+ media_x: Optional[int] = None
210
+ media_y: Optional[int] = None
211
+
212
+
213
+ class LTXVideoPipeline(DiffusionPipeline):
214
+ r"""
215
+ Pipeline for text-to-image generation using LTX-Video.
216
+
217
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
218
+ library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
219
+
220
+ Args:
221
+ vae ([`AutoencoderKL`]):
222
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
223
+ text_encoder ([`T5EncoderModel`]):
224
+ Frozen text-encoder. This uses
225
+ [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
226
+ [t5-v1_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant.
227
+ tokenizer (`T5Tokenizer`):
228
+ Tokenizer of class
229
+ [T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
230
+ transformer ([`Transformer2DModel`]):
231
+ A text conditioned `Transformer2DModel` to denoise the encoded image latents.
232
+ scheduler ([`SchedulerMixin`]):
233
+ A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
234
+ """
235
+
236
+ bad_punct_regex = re.compile(
237
+ r"["
238
+ + "#®•©™&@·º½¾¿¡§~"
239
+ + r"\)"
240
+ + r"\("
241
+ + r"\]"
242
+ + r"\["
243
+ + r"\}"
244
+ + r"\{"
245
+ + r"\|"
246
+ + "\\"
247
+ + r"\/"
248
+ + r"\*"
249
+ + r"]{1,}"
250
+ ) # noqa
251
+
252
+ _optional_components = [
253
+ "tokenizer",
254
+ "text_encoder",
255
+ "prompt_enhancer_image_caption_model",
256
+ "prompt_enhancer_image_caption_processor",
257
+ "prompt_enhancer_llm_model",
258
+ "prompt_enhancer_llm_tokenizer",
259
+ ]
260
+ model_cpu_offload_seq = "prompt_enhancer_image_caption_model->prompt_enhancer_llm_model->text_encoder->transformer->vae"
261
+
262
+ def __init__(
263
+ self,
264
+ tokenizer: T5Tokenizer,
265
+ text_encoder: T5EncoderModel,
266
+ vae: AutoencoderKL,
267
+ transformer: Transformer3DModel,
268
+ scheduler: DPMSolverMultistepScheduler,
269
+ patchifier: Patchifier,
270
+ prompt_enhancer_image_caption_model: AutoModelForCausalLM,
271
+ prompt_enhancer_image_caption_processor: AutoProcessor,
272
+ prompt_enhancer_llm_model: AutoModelForCausalLM,
273
+ prompt_enhancer_llm_tokenizer: AutoTokenizer,
274
+ allowed_inference_steps: Optional[List[float]] = None,
275
+ ):
276
+ super().__init__()
277
+
278
+ self.register_modules(
279
+ tokenizer=tokenizer,
280
+ text_encoder=text_encoder,
281
+ vae=vae,
282
+ transformer=transformer,
283
+ scheduler=scheduler,
284
+ patchifier=patchifier,
285
+ prompt_enhancer_image_caption_model=prompt_enhancer_image_caption_model,
286
+ prompt_enhancer_image_caption_processor=prompt_enhancer_image_caption_processor,
287
+ prompt_enhancer_llm_model=prompt_enhancer_llm_model,
288
+ prompt_enhancer_llm_tokenizer=prompt_enhancer_llm_tokenizer,
289
+ )
290
+
291
+ self.video_scale_factor, self.vae_scale_factor, _ = get_vae_size_scale_factor(
292
+ self.vae
293
+ )
294
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
295
+
296
+ self.allowed_inference_steps = allowed_inference_steps
297
+
298
+ def mask_text_embeddings(self, emb, mask):
299
+ if emb.shape[0] == 1:
300
+ keep_index = mask.sum().item()
301
+ return emb[:, :, :keep_index, :], keep_index
302
+ else:
303
+ masked_feature = emb * mask[:, None, :, None]
304
+ return masked_feature, emb.shape[2]
305
+
306
+ # Adapted from diffusers.pipelines.deepfloyd_if.pipeline_if.encode_prompt
307
+ def encode_prompt(
308
+ self,
309
+ prompt: Union[str, List[str]],
310
+ do_classifier_free_guidance: bool = True,
311
+ negative_prompt: str = "",
312
+ num_images_per_prompt: int = 1,
313
+ device: Optional[torch.device] = None,
314
+ prompt_embeds: Optional[torch.FloatTensor] = None,
315
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
316
+ prompt_attention_mask: Optional[torch.FloatTensor] = None,
317
+ negative_prompt_attention_mask: Optional[torch.FloatTensor] = None,
318
+ text_encoder_max_tokens: int = 256,
319
+ **kwargs,
320
+ ):
321
+ r"""
322
+ Encodes the prompt into text encoder hidden states.
323
+
324
+ Args:
325
+ prompt (`str` or `List[str]`, *optional*):
326
+ prompt to be encoded
327
+ negative_prompt (`str` or `List[str]`, *optional*):
328
+ The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds`
329
+ instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). For
330
+ This should be "".
331
+ do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
332
+ whether to use classifier free guidance or not
333
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
334
+ number of images that should be generated per prompt
335
+ device: (`torch.device`, *optional*):
336
+ torch device to place the resulting embeddings on
337
+ prompt_embeds (`torch.FloatTensor`, *optional*):
338
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
339
+ provided, text embeddings will be generated from `prompt` input argument.
340
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
341
+ Pre-generated negative text embeddings.
342
+ """
343
+
344
+ if "mask_feature" in kwargs:
345
+ deprecation_message = "The use of `mask_feature` is deprecated. It is no longer used in any computation and that doesn't affect the end results. It will be removed in a future version."
346
+ deprecate("mask_feature", "1.0.0", deprecation_message, standard_warn=False)
347
+
348
+ if device is None:
349
+ device = self._execution_device
350
+
351
+ if prompt is not None and isinstance(prompt, str):
352
+ batch_size = 1
353
+ elif prompt is not None and isinstance(prompt, list):
354
+ batch_size = len(prompt)
355
+ else:
356
+ batch_size = prompt_embeds.shape[0]
357
+
358
+ # See Section 3.1. of the paper.
359
+ max_length = (
360
+ text_encoder_max_tokens # TPU supports only lengths multiple of 128
361
+ )
362
+ if prompt_embeds is None:
363
+ assert (
364
+ self.text_encoder is not None
365
+ ), "You should provide either prompt_embeds or self.text_encoder should not be None,"
366
+ text_enc_device = next(self.text_encoder.parameters()).device
367
+ prompt = self._text_preprocessing(prompt)
368
+ text_inputs = self.tokenizer(
369
+ prompt,
370
+ padding="max_length",
371
+ max_length=max_length,
372
+ truncation=True,
373
+ add_special_tokens=True,
374
+ return_tensors="pt",
375
+ )
376
+ text_input_ids = text_inputs.input_ids
377
+ untruncated_ids = self.tokenizer(
378
+ prompt, padding="longest", return_tensors="pt"
379
+ ).input_ids
380
+
381
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[
382
+ -1
383
+ ] and not torch.equal(text_input_ids, untruncated_ids):
384
+ removed_text = self.tokenizer.batch_decode(
385
+ untruncated_ids[:, max_length - 1 : -1]
386
+ )
387
+ logger.warning(
388
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
389
+ f" {max_length} tokens: {removed_text}"
390
+ )
391
+
392
+ prompt_attention_mask = text_inputs.attention_mask
393
+ prompt_attention_mask = prompt_attention_mask.to(text_enc_device)
394
+ prompt_attention_mask = prompt_attention_mask.to(device)
395
+
396
+ prompt_embeds = self.text_encoder(
397
+ text_input_ids.to(text_enc_device), attention_mask=prompt_attention_mask
398
+ )
399
+ prompt_embeds = prompt_embeds[0]
400
+
401
+ if self.text_encoder is not None:
402
+ dtype = self.text_encoder.dtype
403
+ elif self.transformer is not None:
404
+ dtype = self.transformer.dtype
405
+ else:
406
+ dtype = None
407
+
408
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
409
+
410
+ bs_embed, seq_len, _ = prompt_embeds.shape
411
+ # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
412
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
413
+ prompt_embeds = prompt_embeds.view(
414
+ bs_embed * num_images_per_prompt, seq_len, -1
415
+ )
416
+ prompt_attention_mask = prompt_attention_mask.repeat(1, num_images_per_prompt)
417
+ prompt_attention_mask = prompt_attention_mask.view(
418
+ bs_embed * num_images_per_prompt, -1
419
+ )
420
+
421
+ # get unconditional embeddings for classifier free guidance
422
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
423
+ uncond_tokens = self._text_preprocessing(negative_prompt)
424
+ uncond_tokens = uncond_tokens * batch_size
425
+ max_length = prompt_embeds.shape[1]
426
+ uncond_input = self.tokenizer(
427
+ uncond_tokens,
428
+ padding="max_length",
429
+ max_length=max_length,
430
+ truncation=True,
431
+ return_attention_mask=True,
432
+ add_special_tokens=True,
433
+ return_tensors="pt",
434
+ )
435
+ negative_prompt_attention_mask = uncond_input.attention_mask
436
+ negative_prompt_attention_mask = negative_prompt_attention_mask.to(
437
+ text_enc_device
438
+ )
439
+
440
+ negative_prompt_embeds = self.text_encoder(
441
+ uncond_input.input_ids.to(text_enc_device),
442
+ attention_mask=negative_prompt_attention_mask,
443
+ )
444
+ negative_prompt_embeds = negative_prompt_embeds[0]
445
+
446
+ if do_classifier_free_guidance:
447
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
448
+ seq_len = negative_prompt_embeds.shape[1]
449
+
450
+ negative_prompt_embeds = negative_prompt_embeds.to(
451
+ dtype=dtype, device=device
452
+ )
453
+
454
+ negative_prompt_embeds = negative_prompt_embeds.repeat(
455
+ 1, num_images_per_prompt, 1
456
+ )
457
+ negative_prompt_embeds = negative_prompt_embeds.view(
458
+ batch_size * num_images_per_prompt, seq_len, -1
459
+ )
460
+
461
+ negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(
462
+ 1, num_images_per_prompt
463
+ )
464
+ negative_prompt_attention_mask = negative_prompt_attention_mask.view(
465
+ bs_embed * num_images_per_prompt, -1
466
+ )
467
+ else:
468
+ negative_prompt_embeds = None
469
+ negative_prompt_attention_mask = None
470
+
471
+ return (
472
+ prompt_embeds,
473
+ prompt_attention_mask,
474
+ negative_prompt_embeds,
475
+ negative_prompt_attention_mask,
476
+ )
477
+
478
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
479
+ def prepare_extra_step_kwargs(self, generator, eta):
480
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
481
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
482
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
483
+ # and should be between [0, 1]
484
+
485
+ accepts_eta = "eta" in set(
486
+ inspect.signature(self.scheduler.step).parameters.keys()
487
+ )
488
+ extra_step_kwargs = {}
489
+ if accepts_eta:
490
+ extra_step_kwargs["eta"] = eta
491
+
492
+ # check if the scheduler accepts generator
493
+ accepts_generator = "generator" in set(
494
+ inspect.signature(self.scheduler.step).parameters.keys()
495
+ )
496
+ if accepts_generator:
497
+ extra_step_kwargs["generator"] = generator
498
+ return extra_step_kwargs
499
+
500
+ def check_inputs(
501
+ self,
502
+ prompt,
503
+ height,
504
+ width,
505
+ negative_prompt,
506
+ prompt_embeds=None,
507
+ negative_prompt_embeds=None,
508
+ prompt_attention_mask=None,
509
+ negative_prompt_attention_mask=None,
510
+ enhance_prompt=False,
511
+ ):
512
+ if height % 8 != 0 or width % 8 != 0:
513
+ raise ValueError(
514
+ f"`height` and `width` have to be divisible by 8 but are {height} and {width}."
515
+ )
516
+
517
+ if prompt is not None and prompt_embeds is not None:
518
+ raise ValueError(
519
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
520
+ " only forward one of the two."
521
+ )
522
+ elif prompt is None and prompt_embeds is None:
523
+ raise ValueError(
524
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
525
+ )
526
+ elif prompt is not None and (
527
+ not isinstance(prompt, str) and not isinstance(prompt, list)
528
+ ):
529
+ raise ValueError(
530
+ f"`prompt` has to be of type `str` or `list` but is {type(prompt)}"
531
+ )
532
+
533
+ if prompt is not None and negative_prompt_embeds is not None:
534
+ raise ValueError(
535
+ f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:"
536
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
537
+ )
538
+
539
+ if negative_prompt is not None and negative_prompt_embeds is not None:
540
+ raise ValueError(
541
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
542
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
543
+ )
544
+
545
+ if prompt_embeds is not None and prompt_attention_mask is None:
546
+ raise ValueError(
547
+ "Must provide `prompt_attention_mask` when specifying `prompt_embeds`."
548
+ )
549
+
550
+ if (
551
+ negative_prompt_embeds is not None
552
+ and negative_prompt_attention_mask is None
553
+ ):
554
+ raise ValueError(
555
+ "Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`."
556
+ )
557
+
558
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
559
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
560
+ raise ValueError(
561
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
562
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
563
+ f" {negative_prompt_embeds.shape}."
564
+ )
565
+ if prompt_attention_mask.shape != negative_prompt_attention_mask.shape:
566
+ raise ValueError(
567
+ "`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but"
568
+ f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`"
569
+ f" {negative_prompt_attention_mask.shape}."
570
+ )
571
+
572
+ if enhance_prompt:
573
+ assert (
574
+ self.prompt_enhancer_image_caption_model is not None
575
+ ), "Image caption model must be initialized if enhance_prompt is True"
576
+ assert (
577
+ self.prompt_enhancer_image_caption_processor is not None
578
+ ), "Image caption processor must be initialized if enhance_prompt is True"
579
+ assert (
580
+ self.prompt_enhancer_llm_model is not None
581
+ ), "Text prompt enhancer model must be initialized if enhance_prompt is True"
582
+ assert (
583
+ self.prompt_enhancer_llm_tokenizer is not None
584
+ ), "Text prompt enhancer tokenizer must be initialized if enhance_prompt is True"
585
+
586
+ def _text_preprocessing(self, text):
587
+ if not isinstance(text, (tuple, list)):
588
+ text = [text]
589
+
590
+ def process(text: str):
591
+ text = text.strip()
592
+ return text
593
+
594
+ return [process(t) for t in text]
595
+
596
+ @staticmethod
597
+ def add_noise_to_image_conditioning_latents(
598
+ t: float,
599
+ init_latents: torch.Tensor,
600
+ latents: torch.Tensor,
601
+ noise_scale: float,
602
+ conditioning_mask: torch.Tensor,
603
+ generator,
604
+ eps=1e-6,
605
+ ):
606
+ """
607
+ Add timestep-dependent noise to the hard-conditioning latents.
608
+ This helps with motion continuity, especially when conditioned on a single frame.
609
+ """
610
+ noise = randn_tensor(
611
+ latents.shape,
612
+ generator=generator,
613
+ device=latents.device,
614
+ dtype=latents.dtype,
615
+ )
616
+ # Add noise only to hard-conditioning latents (conditioning_mask = 1.0)
617
+ need_to_noise = (conditioning_mask > 1.0 - eps).unsqueeze(-1)
618
+ noised_latents = init_latents + noise_scale * noise * (t**2)
619
+ latents = torch.where(need_to_noise, noised_latents, latents)
620
+ return latents
621
+
622
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
623
+ def prepare_latents(
624
+ self,
625
+ latents: torch.Tensor | None,
626
+ media_items: torch.Tensor | None,
627
+ timestep: float,
628
+ latent_shape: torch.Size | Tuple[Any, ...],
629
+ dtype: torch.dtype,
630
+ device: torch.device,
631
+ generator: torch.Generator | List[torch.Generator],
632
+ vae_per_channel_normalize: bool = True,
633
+ ):
634
+ """
635
+ Prepare the initial latent tensor to be denoised.
636
+ The latents are either pure noise or a noised version of the encoded media items.
637
+ Args:
638
+ latents (`torch.FloatTensor` or `None`):
639
+ The latents to use (provided by the user) or `None` to create new latents.
640
+ media_items (`torch.FloatTensor` or `None`):
641
+ An image or video to be updated using img2img or vid2vid. The media item is encoded and noised.
642
+ timestep (`float`):
643
+ The timestep to noise the encoded media_items to.
644
+ latent_shape (`torch.Size`):
645
+ The target latent shape.
646
+ dtype (`torch.dtype`):
647
+ The target dtype.
648
+ device (`torch.device`):
649
+ The target device.
650
+ generator (`torch.Generator` or `List[torch.Generator]`):
651
+ Generator(s) to be used for the noising process.
652
+ vae_per_channel_normalize ('bool'):
653
+ When encoding the media_items, whether to normalize the latents per-channel.
654
+ Returns:
655
+ `torch.FloatTensor`: The latents to be used for the denoising process. This is a tensor of shape
656
+ (batch_size, num_channels, height, width).
657
+ """
658
+ if isinstance(generator, list) and len(generator) != latent_shape[0]:
659
+ raise ValueError(
660
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
661
+ f" size of {latent_shape[0]}. Make sure the batch size matches the length of the generators."
662
+ )
663
+
664
+ # Initialize the latents with the given latents or encoded media item, if provided
665
+ assert (
666
+ latents is None or media_items is None
667
+ ), "Cannot provide both latents and media_items. Please provide only one of the two."
668
+
669
+ assert (
670
+ latents is None and media_items is None or timestep < 1.0
671
+ ), "Input media_item or latents are provided, but they will be replaced with noise."
672
+
673
+ if media_items is not None:
674
+ latents = vae_encode(
675
+ media_items.to(dtype=self.vae.dtype, device=self.vae.device),
676
+ self.vae,
677
+ vae_per_channel_normalize=vae_per_channel_normalize,
678
+ )
679
+ if latents is not None:
680
+ assert (
681
+ latents.shape == latent_shape
682
+ ), f"Latents have to be of shape {latent_shape} but are {latents.shape}."
683
+ latents = latents.to(device=device, dtype=dtype)
684
+
685
+ # For backward compatibility, generate in the "patchified" shape and rearrange
686
+ b, c, f, h, w = latent_shape
687
+ noise = randn_tensor(
688
+ (b, f * h * w, c), generator=generator, device=device, dtype=dtype
689
+ )
690
+ noise = rearrange(noise, "b (f h w) c -> b c f h w", f=f, h=h, w=w)
691
+
692
+ # scale the initial noise by the standard deviation required by the scheduler
693
+ noise = noise * self.scheduler.init_noise_sigma
694
+
695
+ if latents is None:
696
+ latents = noise
697
+ else:
698
+ # Noise the latents to the required (first) timestep
699
+ latents = timestep * noise + (1 - timestep) * latents
700
+
701
+ return latents
702
+
703
+ @staticmethod
704
+ def classify_height_width_bin(
705
+ height: int, width: int, ratios: dict
706
+ ) -> Tuple[int, int]:
707
+ """Returns binned height and width."""
708
+ ar = float(height / width)
709
+ closest_ratio = min(ratios.keys(), key=lambda ratio: abs(float(ratio) - ar))
710
+ default_hw = ratios[closest_ratio]
711
+ return int(default_hw[0]), int(default_hw[1])
712
+
713
+ @staticmethod
714
+ def resize_and_crop_tensor(
715
+ samples: torch.Tensor, new_width: int, new_height: int
716
+ ) -> torch.Tensor:
717
+ n_frames, orig_height, orig_width = samples.shape[-3:]
718
+
719
+ # Check if resizing is needed
720
+ if orig_height != new_height or orig_width != new_width:
721
+ ratio = max(new_height / orig_height, new_width / orig_width)
722
+ resized_width = int(orig_width * ratio)
723
+ resized_height = int(orig_height * ratio)
724
+
725
+ # Resize
726
+ samples = LTXVideoPipeline.resize_tensor(
727
+ samples, resized_height, resized_width
728
+ )
729
+
730
+ # Center Crop
731
+ start_x = (resized_width - new_width) // 2
732
+ end_x = start_x + new_width
733
+ start_y = (resized_height - new_height) // 2
734
+ end_y = start_y + new_height
735
+ samples = samples[..., start_y:end_y, start_x:end_x]
736
+
737
+ return samples
738
+
739
+ @staticmethod
740
+ def resize_tensor(media_items, height, width):
741
+ n_frames = media_items.shape[2]
742
+ if media_items.shape[-2:] != (height, width):
743
+ media_items = rearrange(media_items, "b c n h w -> (b n) c h w")
744
+ media_items = F.interpolate(
745
+ media_items,
746
+ size=(height, width),
747
+ mode="bilinear",
748
+ align_corners=False,
749
+ )
750
+ media_items = rearrange(media_items, "(b n) c h w -> b c n h w", n=n_frames)
751
+ return media_items
752
+
753
+ @torch.no_grad()
754
+ def __call__(
755
+ self,
756
+ height: int,
757
+ width: int,
758
+ num_frames: int,
759
+ frame_rate: float,
760
+ prompt: Union[str, List[str]] = None,
761
+ negative_prompt: str = "",
762
+ num_inference_steps: int = 20,
763
+ skip_initial_inference_steps: int = 0,
764
+ skip_final_inference_steps: int = 0,
765
+ timesteps: List[int] = None,
766
+ guidance_scale: Union[float, List[float]] = 4.5,
767
+ cfg_star_rescale: bool = False,
768
+ skip_layer_strategy: Optional[SkipLayerStrategy] = None,
769
+ skip_block_list: Optional[Union[List[List[int]], List[int]]] = None,
770
+ stg_scale: Union[float, List[float]] = 1.0,
771
+ rescaling_scale: Union[float, List[float]] = 0.7,
772
+ guidance_timesteps: Optional[List[int]] = None,
773
+ num_images_per_prompt: Optional[int] = 1,
774
+ eta: float = 0.0,
775
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
776
+ latents: Optional[torch.FloatTensor] = None,
777
+ prompt_embeds: Optional[torch.FloatTensor] = None,
778
+ prompt_attention_mask: Optional[torch.FloatTensor] = None,
779
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
780
+ negative_prompt_attention_mask: Optional[torch.FloatTensor] = None,
781
+ output_type: Optional[str] = "pil",
782
+ return_dict: bool = True,
783
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
784
+ conditioning_items: Optional[List[ConditioningItem]] = None,
785
+ decode_timestep: Union[List[float], float] = 0.0,
786
+ decode_noise_scale: Optional[List[float]] = None,
787
+ mixed_precision: bool = False,
788
+ offload_to_cpu: bool = False,
789
+ enhance_prompt: bool = False,
790
+ text_encoder_max_tokens: int = 256,
791
+ stochastic_sampling: bool = False,
792
+ media_items: Optional[torch.Tensor] = None,
793
+ tone_map_compression_ratio: float = 0.0,
794
+ **kwargs,
795
+ ) -> Union[ImagePipelineOutput, Tuple]:
796
+ """
797
+ Function invoked when calling the pipeline for generation.
798
+
799
+ Args:
800
+ prompt (`str` or `List[str]`, *optional*):
801
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
802
+ instead.
803
+ negative_prompt (`str` or `List[str]`, *optional*):
804
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
805
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
806
+ less than `1`).
807
+ num_inference_steps (`int`, *optional*, defaults to 100):
808
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
809
+ expense of slower inference. If `timesteps` is provided, this parameter is ignored.
810
+ skip_initial_inference_steps (`int`, *optional*, defaults to 0):
811
+ The number of initial timesteps to skip. After calculating the timesteps, this number of timesteps will
812
+ be removed from the beginning of the timesteps list. Meaning the highest-timesteps values will not run.
813
+ skip_final_inference_steps (`int`, *optional*, defaults to 0):
814
+ The number of final timesteps to skip. After calculating the timesteps, this number of timesteps will
815
+ be removed from the end of the timesteps list. Meaning the lowest-timesteps values will not run.
816
+ timesteps (`List[int]`, *optional*):
817
+ Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps`
818
+ timesteps are used. Must be in descending order.
819
+ guidance_scale (`float`, *optional*, defaults to 4.5):
820
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
821
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
822
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
823
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
824
+ usually at the expense of lower image quality.
825
+ cfg_star_rescale (`bool`, *optional*, defaults to `False`):
826
+ If set to `True`, applies the CFG star rescale. Scales the negative prediction according to dot
827
+ product between positive and negative.
828
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
829
+ The number of images to generate per prompt.
830
+ height (`int`, *optional*, defaults to self.unet.config.sample_size):
831
+ The height in pixels of the generated image.
832
+ width (`int`, *optional*, defaults to self.unet.config.sample_size):
833
+ The width in pixels of the generated image.
834
+ eta (`float`, *optional*, defaults to 0.0):
835
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
836
+ [`schedulers.DDIMScheduler`], will be ignored for others.
837
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
838
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
839
+ to make generation deterministic.
840
+ latents (`torch.FloatTensor`, *optional*):
841
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
842
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
843
+ tensor will ge generated by sampling using the supplied random `generator`.
844
+ prompt_embeds (`torch.FloatTensor`, *optional*):
845
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
846
+ provided, text embeddings will be generated from `prompt` input argument.
847
+ prompt_attention_mask (`torch.FloatTensor`, *optional*): Pre-generated attention mask for text embeddings.
848
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
849
+ Pre-generated negative text embeddings. This negative prompt should be "". If not
850
+ provided, negative_prompt_embeds will be generated from `negative_prompt` input argument.
851
+ negative_prompt_attention_mask (`torch.FloatTensor`, *optional*):
852
+ Pre-generated attention mask for negative text embeddings.
853
+ output_type (`str`, *optional*, defaults to `"pil"`):
854
+ The output format of the generate image. Choose between
855
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
856
+ return_dict (`bool`, *optional*, defaults to `True`):
857
+ Whether to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple.
858
+ callback_on_step_end (`Callable`, *optional*):
859
+ A function that calls at the end of each denoising steps during the inference. The function is called
860
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
861
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
862
+ `callback_on_step_end_tensor_inputs`.
863
+ use_resolution_binning (`bool` defaults to `True`):
864
+ If set to `True`, the requested height and width are first mapped to the closest resolutions using
865
+ `ASPECT_RATIO_1024_BIN`. After the produced latents are decoded into images, they are resized back to
866
+ the requested resolution. Useful for generating non-square images.
867
+ enhance_prompt (`bool`, *optional*, defaults to `False`):
868
+ If set to `True`, the prompt is enhanced using a LLM model.
869
+ text_encoder_max_tokens (`int`, *optional*, defaults to `256`):
870
+ The maximum number of tokens to use for the text encoder.
871
+ stochastic_sampling (`bool`, *optional*, defaults to `False`):
872
+ If set to `True`, the sampling is stochastic. If set to `False`, the sampling is deterministic.
873
+ media_items ('torch.Tensor', *optional*):
874
+ The input media item used for image-to-image / video-to-video.
875
+ tone_map_compression_ratio: compression ratio for tone mapping, defaults to 0.0.
876
+ If set to 0.0, no tone mapping is applied. If set to 1.0 - full compression is applied.
877
+ Examples:
878
+
879
+ Returns:
880
+ [`~pipelines.ImagePipelineOutput`] or `tuple`:
881
+ If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is
882
+ returned where the first element is a list with the generated images
883
+ """
884
+ if "mask_feature" in kwargs:
885
+ deprecation_message = "The use of `mask_feature` is deprecated. It is no longer used in any computation and that doesn't affect the end results. It will be removed in a future version."
886
+ deprecate("mask_feature", "1.0.0", deprecation_message, standard_warn=False)
887
+
888
+ is_video = kwargs.get("is_video", False)
889
+ self.check_inputs(
890
+ prompt,
891
+ height,
892
+ width,
893
+ negative_prompt,
894
+ prompt_embeds,
895
+ negative_prompt_embeds,
896
+ prompt_attention_mask,
897
+ negative_prompt_attention_mask,
898
+ )
899
+
900
+ # 2. Default height and width to transformer
901
+ if prompt is not None and isinstance(prompt, str):
902
+ batch_size = 1
903
+ elif prompt is not None and isinstance(prompt, list):
904
+ batch_size = len(prompt)
905
+ else:
906
+ batch_size = prompt_embeds.shape[0]
907
+
908
+ device = self._execution_device
909
+
910
+ self.video_scale_factor = self.video_scale_factor if is_video else 1
911
+ vae_per_channel_normalize = kwargs.get("vae_per_channel_normalize", True)
912
+ image_cond_noise_scale = kwargs.get("image_cond_noise_scale", 0.0)
913
+
914
+ latent_height = height // self.vae_scale_factor
915
+ latent_width = width // self.vae_scale_factor
916
+ latent_num_frames = num_frames // self.video_scale_factor
917
+ if isinstance(self.vae, CausalVideoAutoencoder) and is_video:
918
+ latent_num_frames += 1
919
+ latent_shape = (
920
+ batch_size * num_images_per_prompt,
921
+ self.transformer.config.in_channels,
922
+ latent_num_frames,
923
+ latent_height,
924
+ latent_width,
925
+ )
926
+
927
+ # Prepare the list of denoising time-steps
928
+
929
+ retrieve_timesteps_kwargs = {}
930
+ if isinstance(self.scheduler, TimestepShifter):
931
+ retrieve_timesteps_kwargs["samples_shape"] = latent_shape
932
+
933
+ assert (
934
+ skip_initial_inference_steps == 0
935
+ or latents is not None
936
+ or media_items is not None
937
+ ), (
938
+ f"skip_initial_inference_steps ({skip_initial_inference_steps}) is used for image-to-image/video-to-video - "
939
+ "media_item or latents should be provided."
940
+ )
941
+
942
+ timesteps, num_inference_steps = retrieve_timesteps(
943
+ self.scheduler,
944
+ num_inference_steps,
945
+ device,
946
+ timesteps,
947
+ skip_initial_inference_steps=skip_initial_inference_steps,
948
+ skip_final_inference_steps=skip_final_inference_steps,
949
+ **retrieve_timesteps_kwargs,
950
+ )
951
+
952
+ if self.allowed_inference_steps is not None:
953
+ for timestep in [round(x, 4) for x in timesteps.tolist()]:
954
+ assert (
955
+ timestep in self.allowed_inference_steps
956
+ ), f"Invalid inference timestep {timestep}. Allowed timesteps are {self.allowed_inference_steps}."
957
+
958
+ if guidance_timesteps:
959
+ guidance_mapping = []
960
+ for timestep in timesteps:
961
+ indices = [
962
+ i for i, val in enumerate(guidance_timesteps) if val <= timestep
963
+ ]
964
+ # assert len(indices) > 0, f"No guidance timestep found for {timestep}"
965
+ guidance_mapping.append(
966
+ indices[0] if len(indices) > 0 else (len(guidance_timesteps) - 1)
967
+ )
968
+
969
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
970
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
971
+ # corresponds to doing no classifier free guidance.
972
+ if not isinstance(guidance_scale, List):
973
+ guidance_scale = [guidance_scale] * len(timesteps)
974
+ else:
975
+ guidance_scale = [
976
+ guidance_scale[guidance_mapping[i]] for i in range(len(timesteps))
977
+ ]
978
+
979
+ if not isinstance(stg_scale, List):
980
+ stg_scale = [stg_scale] * len(timesteps)
981
+ else:
982
+ stg_scale = [stg_scale[guidance_mapping[i]] for i in range(len(timesteps))]
983
+
984
+ if not isinstance(rescaling_scale, List):
985
+ rescaling_scale = [rescaling_scale] * len(timesteps)
986
+ else:
987
+ rescaling_scale = [
988
+ rescaling_scale[guidance_mapping[i]] for i in range(len(timesteps))
989
+ ]
990
+
991
+ # Normalize skip_block_list to always be None or a list of lists matching timesteps
992
+ if skip_block_list is not None:
993
+ # Convert single list to list of lists if needed
994
+ if len(skip_block_list) == 0 or not isinstance(skip_block_list[0], list):
995
+ skip_block_list = [skip_block_list] * len(timesteps)
996
+ else:
997
+ new_skip_block_list = []
998
+ for i, timestep in enumerate(timesteps):
999
+ new_skip_block_list.append(skip_block_list[guidance_mapping[i]])
1000
+ skip_block_list = new_skip_block_list
1001
+
1002
+ if enhance_prompt:
1003
+ self.prompt_enhancer_image_caption_model = (
1004
+ self.prompt_enhancer_image_caption_model.to(self._execution_device)
1005
+ )
1006
+ self.prompt_enhancer_llm_model = self.prompt_enhancer_llm_model.to(
1007
+ self._execution_device
1008
+ )
1009
+
1010
+ prompt = generate_cinematic_prompt(
1011
+ self.prompt_enhancer_image_caption_model,
1012
+ self.prompt_enhancer_image_caption_processor,
1013
+ self.prompt_enhancer_llm_model,
1014
+ self.prompt_enhancer_llm_tokenizer,
1015
+ prompt,
1016
+ conditioning_items,
1017
+ max_new_tokens=text_encoder_max_tokens,
1018
+ )
1019
+
1020
+ # 3. Encode input prompt
1021
+ if self.text_encoder is not None:
1022
+ self.text_encoder = self.text_encoder.to(self._execution_device)
1023
+
1024
+ (
1025
+ prompt_embeds,
1026
+ prompt_attention_mask,
1027
+ negative_prompt_embeds,
1028
+ negative_prompt_attention_mask,
1029
+ ) = self.encode_prompt(
1030
+ prompt,
1031
+ True,
1032
+ negative_prompt=negative_prompt,
1033
+ num_images_per_prompt=num_images_per_prompt,
1034
+ device=device,
1035
+ prompt_embeds=prompt_embeds,
1036
+ negative_prompt_embeds=negative_prompt_embeds,
1037
+ prompt_attention_mask=prompt_attention_mask,
1038
+ negative_prompt_attention_mask=negative_prompt_attention_mask,
1039
+ text_encoder_max_tokens=text_encoder_max_tokens,
1040
+ )
1041
+
1042
+ if offload_to_cpu and self.text_encoder is not None:
1043
+ self.text_encoder = self.text_encoder.cpu()
1044
+
1045
+ self.transformer = self.transformer.to(self._execution_device)
1046
+
1047
+ prompt_embeds_batch = prompt_embeds
1048
+ prompt_attention_mask_batch = prompt_attention_mask
1049
+ negative_prompt_embeds = (
1050
+ torch.zeros_like(prompt_embeds)
1051
+ if negative_prompt_embeds is None
1052
+ else negative_prompt_embeds
1053
+ )
1054
+ negative_prompt_attention_mask = (
1055
+ torch.zeros_like(prompt_attention_mask)
1056
+ if negative_prompt_attention_mask is None
1057
+ else negative_prompt_attention_mask
1058
+ )
1059
+
1060
+ prompt_embeds_batch = torch.cat(
1061
+ [negative_prompt_embeds, prompt_embeds, prompt_embeds], dim=0
1062
+ )
1063
+ prompt_attention_mask_batch = torch.cat(
1064
+ [
1065
+ negative_prompt_attention_mask,
1066
+ prompt_attention_mask,
1067
+ prompt_attention_mask,
1068
+ ],
1069
+ dim=0,
1070
+ )
1071
+ # 4. Prepare the initial latents using the provided media and conditioning items
1072
+
1073
+ # Prepare the initial latents tensor, shape = (b, c, f, h, w)
1074
+ latents = self.prepare_latents(
1075
+ latents=latents,
1076
+ media_items=media_items,
1077
+ timestep=timesteps[0],
1078
+ latent_shape=latent_shape,
1079
+ dtype=prompt_embeds.dtype,
1080
+ device=device,
1081
+ generator=generator,
1082
+ vae_per_channel_normalize=vae_per_channel_normalize,
1083
+ )
1084
+
1085
+ # Update the latents with the conditioning items and patchify them into (b, n, c)
1086
+ latents, pixel_coords, conditioning_mask, num_cond_latents = (
1087
+ self.prepare_conditioning(
1088
+ conditioning_items=conditioning_items,
1089
+ init_latents=latents,
1090
+ num_frames=num_frames,
1091
+ height=height,
1092
+ width=width,
1093
+ vae_per_channel_normalize=vae_per_channel_normalize,
1094
+ generator=generator,
1095
+ )
1096
+ )
1097
+ init_latents = latents.clone() # Used for image_cond_noise_update
1098
+
1099
+ # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
1100
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
1101
+
1102
+ # 7. Denoising loop
1103
+ num_warmup_steps = max(
1104
+ len(timesteps) - num_inference_steps * self.scheduler.order, 0
1105
+ )
1106
+
1107
+ orig_conditioning_mask = conditioning_mask
1108
+
1109
+ # Befor compiling this code please be aware:
1110
+ # This code might generate different input shapes if some timesteps have no STG or CFG.
1111
+ # This means that the codes might need to be compiled mutliple times.
1112
+ # To avoid that, use the same STG and CFG values for all timesteps.
1113
+
1114
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
1115
+ for i, t in enumerate(timesteps):
1116
+ do_classifier_free_guidance = guidance_scale[i] > 1.0
1117
+ do_spatio_temporal_guidance = stg_scale[i] > 0
1118
+ do_rescaling = rescaling_scale[i] != 1.0
1119
+
1120
+ num_conds = 1
1121
+ if do_classifier_free_guidance:
1122
+ num_conds += 1
1123
+ if do_spatio_temporal_guidance:
1124
+ num_conds += 1
1125
+
1126
+ if do_classifier_free_guidance and do_spatio_temporal_guidance:
1127
+ indices = slice(batch_size * 0, batch_size * 3)
1128
+ elif do_classifier_free_guidance:
1129
+ indices = slice(batch_size * 0, batch_size * 2)
1130
+ elif do_spatio_temporal_guidance:
1131
+ indices = slice(batch_size * 1, batch_size * 3)
1132
+ else:
1133
+ indices = slice(batch_size * 1, batch_size * 2)
1134
+
1135
+ # Prepare skip layer masks
1136
+ skip_layer_mask: Optional[torch.Tensor] = None
1137
+ if do_spatio_temporal_guidance:
1138
+ if skip_block_list is not None:
1139
+ skip_layer_mask = self.transformer.create_skip_layer_mask(
1140
+ batch_size, num_conds, num_conds - 1, skip_block_list[i]
1141
+ )
1142
+
1143
+ batch_pixel_coords = torch.cat([pixel_coords] * num_conds)
1144
+ conditioning_mask = orig_conditioning_mask
1145
+ if conditioning_mask is not None and is_video:
1146
+ assert num_images_per_prompt == 1
1147
+ conditioning_mask = torch.cat([conditioning_mask] * num_conds)
1148
+ fractional_coords = batch_pixel_coords.to(torch.float32)
1149
+ fractional_coords[:, 0] = fractional_coords[:, 0] * (1.0 / frame_rate)
1150
+
1151
+ if conditioning_mask is not None and image_cond_noise_scale > 0.0:
1152
+ latents = self.add_noise_to_image_conditioning_latents(
1153
+ t,
1154
+ init_latents,
1155
+ latents,
1156
+ image_cond_noise_scale,
1157
+ orig_conditioning_mask,
1158
+ generator,
1159
+ )
1160
+
1161
+ latent_model_input = (
1162
+ torch.cat([latents] * num_conds) if num_conds > 1 else latents
1163
+ )
1164
+ latent_model_input = self.scheduler.scale_model_input(
1165
+ latent_model_input, t
1166
+ )
1167
+
1168
+ current_timestep = t
1169
+ if not torch.is_tensor(current_timestep):
1170
+ # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
1171
+ # This would be a good case for the `match` statement (Python 3.10+)
1172
+ is_mps = latent_model_input.device.type == "mps"
1173
+ if isinstance(current_timestep, float):
1174
+ dtype = torch.float32 if is_mps else torch.float64
1175
+ else:
1176
+ dtype = torch.int32 if is_mps else torch.int64
1177
+ current_timestep = torch.tensor(
1178
+ [current_timestep],
1179
+ dtype=dtype,
1180
+ device=latent_model_input.device,
1181
+ )
1182
+ elif len(current_timestep.shape) == 0:
1183
+ current_timestep = current_timestep[None].to(
1184
+ latent_model_input.device
1185
+ )
1186
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
1187
+ current_timestep = current_timestep.expand(
1188
+ latent_model_input.shape[0]
1189
+ ).unsqueeze(-1)
1190
+
1191
+ if conditioning_mask is not None:
1192
+ # Conditioning latents have an initial timestep and noising level of (1.0 - conditioning_mask)
1193
+ # and will start to be denoised when the current timestep is lower than their conditioning timestep.
1194
+ current_timestep = torch.min(
1195
+ current_timestep, 1.0 - conditioning_mask
1196
+ )
1197
+
1198
+ # Choose the appropriate context manager based on `mixed_precision`
1199
+ if mixed_precision:
1200
+ context_manager = torch.autocast(device.type, dtype=torch.bfloat16)
1201
+ else:
1202
+ context_manager = nullcontext() # Dummy context manager
1203
+
1204
+ # predict noise model_output
1205
+ with context_manager:
1206
+ noise_pred = self.transformer(
1207
+ latent_model_input.to(self.transformer.dtype),
1208
+ indices_grid=fractional_coords,
1209
+ encoder_hidden_states=prompt_embeds_batch[indices].to(
1210
+ self.transformer.dtype
1211
+ ),
1212
+ encoder_attention_mask=prompt_attention_mask_batch[indices],
1213
+ timestep=current_timestep,
1214
+ skip_layer_mask=skip_layer_mask,
1215
+ skip_layer_strategy=skip_layer_strategy,
1216
+ return_dict=False,
1217
+ )[0]
1218
+
1219
+ # perform guidance
1220
+ if do_spatio_temporal_guidance:
1221
+ noise_pred_text, noise_pred_text_perturb = noise_pred.chunk(
1222
+ num_conds
1223
+ )[-2:]
1224
+ if do_classifier_free_guidance:
1225
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(num_conds)[:2]
1226
+
1227
+ if cfg_star_rescale:
1228
+ # Rescales the unconditional noise prediction using the projection of the conditional prediction onto it:
1229
+ # α = (⟨ε_text, ε_uncond⟩ / ||ε_uncond||²), then ε_uncond ← α * ε_uncond
1230
+ # where ε_text is the conditional noise prediction and ε_uncond is the unconditional one.
1231
+ positive_flat = noise_pred_text.view(batch_size, -1)
1232
+ negative_flat = noise_pred_uncond.view(batch_size, -1)
1233
+ dot_product = torch.sum(
1234
+ positive_flat * negative_flat, dim=1, keepdim=True
1235
+ )
1236
+ squared_norm = (
1237
+ torch.sum(negative_flat**2, dim=1, keepdim=True) + 1e-8
1238
+ )
1239
+ alpha = dot_product / squared_norm
1240
+ noise_pred_uncond = alpha * noise_pred_uncond
1241
+
1242
+ noise_pred = noise_pred_uncond + guidance_scale[i] * (
1243
+ noise_pred_text - noise_pred_uncond
1244
+ )
1245
+ elif do_spatio_temporal_guidance:
1246
+ noise_pred = noise_pred_text
1247
+ if do_spatio_temporal_guidance:
1248
+ noise_pred = noise_pred + stg_scale[i] * (
1249
+ noise_pred_text - noise_pred_text_perturb
1250
+ )
1251
+ if do_rescaling and stg_scale[i] > 0.0:
1252
+ noise_pred_text_std = noise_pred_text.view(batch_size, -1).std(
1253
+ dim=1, keepdim=True
1254
+ )
1255
+ noise_pred_std = noise_pred.view(batch_size, -1).std(
1256
+ dim=1, keepdim=True
1257
+ )
1258
+
1259
+ factor = noise_pred_text_std / noise_pred_std
1260
+ factor = rescaling_scale[i] * factor + (1 - rescaling_scale[i])
1261
+
1262
+ noise_pred = noise_pred * factor.view(batch_size, 1, 1)
1263
+
1264
+ current_timestep = current_timestep[:1]
1265
+ # learned sigma
1266
+ if (
1267
+ self.transformer.config.out_channels // 2
1268
+ == self.transformer.config.in_channels
1269
+ ):
1270
+ noise_pred = noise_pred.chunk(2, dim=1)[0]
1271
+
1272
+ # compute previous image: x_t -> x_t-1
1273
+ latents = self.denoising_step(
1274
+ latents,
1275
+ noise_pred,
1276
+ current_timestep,
1277
+ orig_conditioning_mask,
1278
+ t,
1279
+ extra_step_kwargs,
1280
+ stochastic_sampling=stochastic_sampling,
1281
+ )
1282
+
1283
+ # call the callback, if provided
1284
+ if i == len(timesteps) - 1 or (
1285
+ (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
1286
+ ):
1287
+ progress_bar.update()
1288
+
1289
+ if callback_on_step_end is not None:
1290
+ callback_on_step_end(self, i, t, {})
1291
+
1292
+ if offload_to_cpu:
1293
+ self.transformer = self.transformer.cpu()
1294
+ if self._execution_device == "cuda":
1295
+ torch.cuda.empty_cache()
1296
+
1297
+ # Remove the added conditioning latents
1298
+ latents = latents[:, num_cond_latents:]
1299
+
1300
+ latents = self.patchifier.unpatchify(
1301
+ latents=latents,
1302
+ output_height=latent_height,
1303
+ output_width=latent_width,
1304
+ out_channels=self.transformer.in_channels
1305
+ // math.prod(self.patchifier.patch_size),
1306
+ )
1307
+ if output_type != "latent":
1308
+ if self.vae.decoder.timestep_conditioning:
1309
+ noise = torch.randn_like(latents)
1310
+ if not isinstance(decode_timestep, list):
1311
+ decode_timestep = [decode_timestep] * latents.shape[0]
1312
+ if decode_noise_scale is None:
1313
+ decode_noise_scale = decode_timestep
1314
+ elif not isinstance(decode_noise_scale, list):
1315
+ decode_noise_scale = [decode_noise_scale] * latents.shape[0]
1316
+
1317
+ decode_timestep = torch.tensor(decode_timestep).to(latents.device)
1318
+ decode_noise_scale = torch.tensor(decode_noise_scale).to(
1319
+ latents.device
1320
+ )[:, None, None, None, None]
1321
+ latents = (
1322
+ latents * (1 - decode_noise_scale) + noise * decode_noise_scale
1323
+ )
1324
+ else:
1325
+ decode_timestep = None
1326
+ latents = self.tone_map_latents(latents, tone_map_compression_ratio)
1327
+ image = vae_decode(
1328
+ latents,
1329
+ self.vae,
1330
+ is_video,
1331
+ vae_per_channel_normalize=kwargs["vae_per_channel_normalize"],
1332
+ timestep=decode_timestep,
1333
+ )
1334
+
1335
+ image = self.image_processor.postprocess(image, output_type=output_type)
1336
+
1337
+ else:
1338
+ image = latents
1339
+
1340
+ # Offload all models
1341
+ self.maybe_free_model_hooks()
1342
+
1343
+ if not return_dict:
1344
+ return (image,)
1345
+
1346
+ return ImagePipelineOutput(images=image)
1347
+
1348
+ def denoising_step(
1349
+ self,
1350
+ latents: torch.Tensor,
1351
+ noise_pred: torch.Tensor,
1352
+ current_timestep: torch.Tensor,
1353
+ conditioning_mask: torch.Tensor,
1354
+ t: float,
1355
+ extra_step_kwargs,
1356
+ t_eps=1e-6,
1357
+ stochastic_sampling=False,
1358
+ ):
1359
+ """
1360
+ Perform the denoising step for the required tokens, based on the current timestep and
1361
+ conditioning mask:
1362
+ Conditioning latents have an initial timestep and noising level of (1.0 - conditioning_mask)
1363
+ and will start to be denoised when the current timestep is equal or lower than their
1364
+ conditioning timestep.
1365
+ (hard-conditioning latents with conditioning_mask = 1.0 are never denoised)
1366
+ """
1367
+ # Denoise the latents using the scheduler
1368
+ denoised_latents = self.scheduler.step(
1369
+ noise_pred,
1370
+ t if current_timestep is None else current_timestep,
1371
+ latents,
1372
+ **extra_step_kwargs,
1373
+ return_dict=False,
1374
+ stochastic_sampling=stochastic_sampling,
1375
+ )[0]
1376
+
1377
+ if conditioning_mask is None:
1378
+ return denoised_latents
1379
+
1380
+ tokens_to_denoise_mask = (t - t_eps < (1.0 - conditioning_mask)).unsqueeze(-1)
1381
+ return torch.where(tokens_to_denoise_mask, denoised_latents, latents)
1382
+
1383
+ def prepare_conditioning(
1384
+ self,
1385
+ conditioning_items: Optional[List[ConditioningItem]],
1386
+ init_latents: torch.Tensor,
1387
+ num_frames: int,
1388
+ height: int,
1389
+ width: int,
1390
+ vae_per_channel_normalize: bool = False,
1391
+ generator=None,
1392
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, int]:
1393
+ """
1394
+ Prepare conditioning tokens based on the provided conditioning items.
1395
+
1396
+ This method encodes provided conditioning items (video frames or single frames) into latents
1397
+ and integrates them with the initial latent tensor. It also calculates corresponding pixel
1398
+ coordinates, a mask indicating the influence of conditioning latents, and the total number of
1399
+ conditioning latents.
1400
+
1401
+ Args:
1402
+ conditioning_items (Optional[List[ConditioningItem]]): A list of ConditioningItem objects.
1403
+ init_latents (torch.Tensor): The initial latent tensor of shape (b, c, f_l, h_l, w_l), where
1404
+ `f_l` is the number of latent frames, and `h_l` and `w_l` are latent spatial dimensions.
1405
+ num_frames, height, width: The dimensions of the generated video.
1406
+ vae_per_channel_normalize (bool, optional): Whether to normalize channels during VAE encoding.
1407
+ Defaults to `False`.
1408
+ generator: The random generator
1409
+
1410
+ Returns:
1411
+ Tuple[torch.Tensor, torch.Tensor, torch.Tensor, int]:
1412
+ - `init_latents` (torch.Tensor): The updated latent tensor including conditioning latents,
1413
+ patchified into (b, n, c) shape.
1414
+ - `init_pixel_coords` (torch.Tensor): The pixel coordinates corresponding to the updated
1415
+ latent tensor.
1416
+ - `conditioning_mask` (torch.Tensor): A mask indicating the conditioning-strength of each
1417
+ latent token.
1418
+ - `num_cond_latents` (int): The total number of latent tokens added from conditioning items.
1419
+
1420
+ Raises:
1421
+ AssertionError: If input shapes, dimensions, or conditions for applying conditioning are invalid.
1422
+ """
1423
+ assert isinstance(self.vae, CausalVideoAutoencoder)
1424
+
1425
+ if conditioning_items:
1426
+ batch_size, _, num_latent_frames = init_latents.shape[:3]
1427
+
1428
+ init_conditioning_mask = torch.zeros(
1429
+ init_latents[:, 0, :, :, :].shape,
1430
+ dtype=torch.float32,
1431
+ device=init_latents.device,
1432
+ )
1433
+
1434
+ extra_conditioning_latents = []
1435
+ extra_conditioning_pixel_coords = []
1436
+ extra_conditioning_mask = []
1437
+ extra_conditioning_num_latents = 0 # Number of extra conditioning latents added (should be removed before decoding)
1438
+
1439
+ # Process each conditioning item
1440
+ for conditioning_item in conditioning_items:
1441
+ conditioning_item = self._resize_conditioning_item(
1442
+ conditioning_item, height, width
1443
+ )
1444
+ media_item = conditioning_item.media_item
1445
+ media_frame_number = conditioning_item.media_frame_number
1446
+ strength = conditioning_item.conditioning_strength
1447
+ assert media_item.ndim == 5 # (b, c, f, h, w)
1448
+ b, c, n_frames, h, w = media_item.shape
1449
+ assert (
1450
+ height == h and width == w
1451
+ ) or media_frame_number == 0, f"Dimensions do not match: {height}x{width} != {h}x{w} - allowed only when media_frame_number == 0"
1452
+ assert n_frames % 8 == 1
1453
+ assert (
1454
+ media_frame_number >= 0
1455
+ and media_frame_number + n_frames <= num_frames
1456
+ )
1457
+
1458
+ # Encode the provided conditioning media item
1459
+ media_item_latents = vae_encode(
1460
+ media_item.to(dtype=self.vae.dtype, device=self.vae.device),
1461
+ self.vae,
1462
+ vae_per_channel_normalize=vae_per_channel_normalize,
1463
+ ).to(dtype=init_latents.dtype)
1464
+
1465
+ # Handle the different conditioning cases
1466
+ if media_frame_number == 0:
1467
+ # Get the target spatial position of the latent conditioning item
1468
+ media_item_latents, l_x, l_y = self._get_latent_spatial_position(
1469
+ media_item_latents,
1470
+ conditioning_item,
1471
+ height,
1472
+ width,
1473
+ strip_latent_border=True,
1474
+ )
1475
+ b, c_l, f_l, h_l, w_l = media_item_latents.shape
1476
+
1477
+ # First frame or sequence - just update the initial noise latents and the mask
1478
+ init_latents[:, :, :f_l, l_y : l_y + h_l, l_x : l_x + w_l] = (
1479
+ torch.lerp(
1480
+ init_latents[:, :, :f_l, l_y : l_y + h_l, l_x : l_x + w_l],
1481
+ media_item_latents,
1482
+ strength,
1483
+ )
1484
+ )
1485
+ init_conditioning_mask[
1486
+ :, :f_l, l_y : l_y + h_l, l_x : l_x + w_l
1487
+ ] = strength
1488
+ else:
1489
+ # Non-first frame or sequence
1490
+ if n_frames > 1:
1491
+ # Handle non-first sequence.
1492
+ # Encoded latents are either fully consumed, or the prefix is handled separately below.
1493
+ (
1494
+ init_latents,
1495
+ init_conditioning_mask,
1496
+ media_item_latents,
1497
+ ) = self._handle_non_first_conditioning_sequence(
1498
+ init_latents,
1499
+ init_conditioning_mask,
1500
+ media_item_latents,
1501
+ media_frame_number,
1502
+ strength,
1503
+ )
1504
+
1505
+ # Single frame or sequence-prefix latents
1506
+ if media_item_latents is not None:
1507
+ noise = randn_tensor(
1508
+ media_item_latents.shape,
1509
+ generator=generator,
1510
+ device=media_item_latents.device,
1511
+ dtype=media_item_latents.dtype,
1512
+ )
1513
+
1514
+ media_item_latents = torch.lerp(
1515
+ noise, media_item_latents, strength
1516
+ )
1517
+
1518
+ # Patchify the extra conditioning latents and calculate their pixel coordinates
1519
+ media_item_latents, latent_coords = self.patchifier.patchify(
1520
+ latents=media_item_latents
1521
+ )
1522
+ pixel_coords = latent_to_pixel_coords(
1523
+ latent_coords,
1524
+ self.vae,
1525
+ causal_fix=self.transformer.config.causal_temporal_positioning,
1526
+ )
1527
+
1528
+ # Update the frame numbers to match the target frame number
1529
+ pixel_coords[:, 0] += media_frame_number
1530
+ extra_conditioning_num_latents += media_item_latents.shape[1]
1531
+
1532
+ conditioning_mask = torch.full(
1533
+ media_item_latents.shape[:2],
1534
+ strength,
1535
+ dtype=torch.float32,
1536
+ device=init_latents.device,
1537
+ )
1538
+
1539
+ extra_conditioning_latents.append(media_item_latents)
1540
+ extra_conditioning_pixel_coords.append(pixel_coords)
1541
+ extra_conditioning_mask.append(conditioning_mask)
1542
+
1543
+ # Patchify the updated latents and calculate their pixel coordinates
1544
+ init_latents, init_latent_coords = self.patchifier.patchify(
1545
+ latents=init_latents
1546
+ )
1547
+ init_pixel_coords = latent_to_pixel_coords(
1548
+ init_latent_coords,
1549
+ self.vae,
1550
+ causal_fix=self.transformer.config.causal_temporal_positioning,
1551
+ )
1552
+
1553
+ if not conditioning_items:
1554
+ return init_latents, init_pixel_coords, None, 0
1555
+
1556
+ init_conditioning_mask, _ = self.patchifier.patchify(
1557
+ latents=init_conditioning_mask.unsqueeze(1)
1558
+ )
1559
+ init_conditioning_mask = init_conditioning_mask.squeeze(-1)
1560
+
1561
+ if extra_conditioning_latents:
1562
+ # Stack the extra conditioning latents, pixel coordinates and mask
1563
+ init_latents = torch.cat([*extra_conditioning_latents, init_latents], dim=1)
1564
+ init_pixel_coords = torch.cat(
1565
+ [*extra_conditioning_pixel_coords, init_pixel_coords], dim=2
1566
+ )
1567
+ init_conditioning_mask = torch.cat(
1568
+ [*extra_conditioning_mask, init_conditioning_mask], dim=1
1569
+ )
1570
+
1571
+ if self.transformer.use_tpu_flash_attention:
1572
+ # When flash attention is used, keep the original number of tokens by removing
1573
+ # tokens from the end.
1574
+ init_latents = init_latents[:, :-extra_conditioning_num_latents]
1575
+ init_pixel_coords = init_pixel_coords[
1576
+ :, :, :-extra_conditioning_num_latents
1577
+ ]
1578
+ init_conditioning_mask = init_conditioning_mask[
1579
+ :, :-extra_conditioning_num_latents
1580
+ ]
1581
+
1582
+ return (
1583
+ init_latents,
1584
+ init_pixel_coords,
1585
+ init_conditioning_mask,
1586
+ extra_conditioning_num_latents,
1587
+ )
1588
+
1589
+ @staticmethod
1590
+ def _resize_conditioning_item(
1591
+ conditioning_item: ConditioningItem,
1592
+ height: int,
1593
+ width: int,
1594
+ ):
1595
+ if conditioning_item.media_x or conditioning_item.media_y:
1596
+ raise ValueError(
1597
+ "Provide media_item in the target size for spatial conditioning."
1598
+ )
1599
+ new_conditioning_item = copy.copy(conditioning_item)
1600
+ new_conditioning_item.media_item = LTXVideoPipeline.resize_tensor(
1601
+ conditioning_item.media_item, height, width
1602
+ )
1603
+ return new_conditioning_item
1604
+
1605
+ def _get_latent_spatial_position(
1606
+ self,
1607
+ latents: torch.Tensor,
1608
+ conditioning_item: ConditioningItem,
1609
+ height: int,
1610
+ width: int,
1611
+ strip_latent_border,
1612
+ ):
1613
+ """
1614
+ Get the spatial position of the conditioning item in the latent space.
1615
+ If requested, strip the conditioning latent borders that do not align with target borders.
1616
+ (border latents look different then other latents and might confuse the model)
1617
+ """
1618
+ scale = self.vae_scale_factor
1619
+ h, w = conditioning_item.media_item.shape[-2:]
1620
+ assert (
1621
+ h <= height and w <= width
1622
+ ), f"Conditioning item size {h}x{w} is larger than target size {height}x{width}"
1623
+ assert h % scale == 0 and w % scale == 0
1624
+
1625
+ # Compute the start and end spatial positions of the media item
1626
+ x_start, y_start = conditioning_item.media_x, conditioning_item.media_y
1627
+ x_start = (width - w) // 2 if x_start is None else x_start
1628
+ y_start = (height - h) // 2 if y_start is None else y_start
1629
+ x_end, y_end = x_start + w, y_start + h
1630
+ assert (
1631
+ x_end <= width and y_end <= height
1632
+ ), f"Conditioning item {x_start}:{x_end}x{y_start}:{y_end} is out of bounds for target size {width}x{height}"
1633
+
1634
+ if strip_latent_border:
1635
+ # Strip one latent from left/right and/or top/bottom, update x, y accordingly
1636
+ if x_start > 0:
1637
+ x_start += scale
1638
+ latents = latents[:, :, :, :, 1:]
1639
+
1640
+ if y_start > 0:
1641
+ y_start += scale
1642
+ latents = latents[:, :, :, 1:, :]
1643
+
1644
+ if x_end < width:
1645
+ latents = latents[:, :, :, :, :-1]
1646
+
1647
+ if y_end < height:
1648
+ latents = latents[:, :, :, :-1, :]
1649
+
1650
+ return latents, x_start // scale, y_start // scale
1651
+
1652
+ @staticmethod
1653
+ def _handle_non_first_conditioning_sequence(
1654
+ init_latents: torch.Tensor,
1655
+ init_conditioning_mask: torch.Tensor,
1656
+ latents: torch.Tensor,
1657
+ media_frame_number: int,
1658
+ strength: float,
1659
+ num_prefix_latent_frames: int = 2,
1660
+ prefix_latents_mode: str = "concat",
1661
+ prefix_soft_conditioning_strength: float = 0.15,
1662
+ ):
1663
+ """
1664
+ Special handling for a conditioning sequence that does not start on the first frame.
1665
+ The special handling is required to allow a short encoded video to be used as middle
1666
+ (or last) sequence in a longer video.
1667
+ Args:
1668
+ init_latents (torch.Tensor): The initial noise latents to be updated.
1669
+ init_conditioning_mask (torch.Tensor): The initial conditioning mask to be updated.
1670
+ latents (torch.Tensor): The encoded conditioning item.
1671
+ media_frame_number (int): The target frame number of the first frame in the conditioning sequence.
1672
+ strength (float): The conditioning strength for the conditioning latents.
1673
+ num_prefix_latent_frames (int, optional): The length of the sequence prefix, to be handled
1674
+ separately. Defaults to 2.
1675
+ prefix_latents_mode (str, optional): Special treatment for prefix (boundary) latents.
1676
+ - "drop": Drop the prefix latents.
1677
+ - "soft": Use the prefix latents, but with soft-conditioning
1678
+ - "concat": Add the prefix latents as extra tokens (like single frames)
1679
+ prefix_soft_conditioning_strength (float, optional): The strength of the soft-conditioning for
1680
+ the prefix latents, relevant if `prefix_latents_mode` is "soft". Defaults to 0.1.
1681
+
1682
+ """
1683
+ f_l = latents.shape[2]
1684
+ f_l_p = num_prefix_latent_frames
1685
+ assert f_l >= f_l_p
1686
+ assert media_frame_number % 8 == 0
1687
+ if f_l > f_l_p:
1688
+ # Insert the conditioning latents **excluding the prefix** into the sequence
1689
+ f_l_start = media_frame_number // 8 + f_l_p
1690
+ f_l_end = f_l_start + f_l - f_l_p
1691
+ init_latents[:, :, f_l_start:f_l_end] = torch.lerp(
1692
+ init_latents[:, :, f_l_start:f_l_end],
1693
+ latents[:, :, f_l_p:],
1694
+ strength,
1695
+ )
1696
+ # Mark these latent frames as conditioning latents
1697
+ init_conditioning_mask[:, f_l_start:f_l_end] = strength
1698
+
1699
+ # Handle the prefix-latents
1700
+ if prefix_latents_mode == "soft":
1701
+ if f_l_p > 1:
1702
+ # Drop the first (single-frame) latent and soft-condition the remaining prefix
1703
+ f_l_start = media_frame_number // 8 + 1
1704
+ f_l_end = f_l_start + f_l_p - 1
1705
+ strength = min(prefix_soft_conditioning_strength, strength)
1706
+ init_latents[:, :, f_l_start:f_l_end] = torch.lerp(
1707
+ init_latents[:, :, f_l_start:f_l_end],
1708
+ latents[:, :, 1:f_l_p],
1709
+ strength,
1710
+ )
1711
+ # Mark these latent frames as conditioning latents
1712
+ init_conditioning_mask[:, f_l_start:f_l_end] = strength
1713
+ latents = None # No more latents to handle
1714
+ elif prefix_latents_mode == "drop":
1715
+ # Drop the prefix latents
1716
+ latents = None
1717
+ elif prefix_latents_mode == "concat":
1718
+ # Pass-on the prefix latents to be handled as extra conditioning frames
1719
+ latents = latents[:, :, :f_l_p]
1720
+ else:
1721
+ raise ValueError(f"Invalid prefix_latents_mode: {prefix_latents_mode}")
1722
+ return (
1723
+ init_latents,
1724
+ init_conditioning_mask,
1725
+ latents,
1726
+ )
1727
+
1728
+ def trim_conditioning_sequence(
1729
+ self, start_frame: int, sequence_num_frames: int, target_num_frames: int
1730
+ ):
1731
+ """
1732
+ Trim a conditioning sequence to the allowed number of frames.
1733
+
1734
+ Args:
1735
+ start_frame (int): The target frame number of the first frame in the sequence.
1736
+ sequence_num_frames (int): The number of frames in the sequence.
1737
+ target_num_frames (int): The target number of frames in the generated video.
1738
+
1739
+ Returns:
1740
+ int: updated sequence length
1741
+ """
1742
+ scale_factor = self.video_scale_factor
1743
+ num_frames = min(sequence_num_frames, target_num_frames - start_frame)
1744
+ # Trim down to a multiple of temporal_scale_factor frames plus 1
1745
+ num_frames = (num_frames - 1) // scale_factor * scale_factor + 1
1746
+ return num_frames
1747
+
1748
+ @staticmethod
1749
+ def tone_map_latents(
1750
+ latents: torch.Tensor,
1751
+ compression: float,
1752
+ ) -> torch.Tensor:
1753
+ """
1754
+ Applies a non-linear tone-mapping function to latent values to reduce their dynamic range
1755
+ in a perceptually smooth way using a sigmoid-based compression.
1756
+
1757
+ This is useful for regularizing high-variance latents or for conditioning outputs
1758
+ during generation, especially when controlling dynamic behavior with a `compression` factor.
1759
+
1760
+ Parameters:
1761
+ ----------
1762
+ latents : torch.Tensor
1763
+ Input latent tensor with arbitrary shape. Expected to be roughly in [-1, 1] or [0, 1] range.
1764
+ compression : float
1765
+ Compression strength in the range [0, 1].
1766
+ - 0.0: No tone-mapping (identity transform)
1767
+ - 1.0: Full compression effect
1768
+
1769
+ Returns:
1770
+ -------
1771
+ torch.Tensor
1772
+ The tone-mapped latent tensor of the same shape as input.
1773
+ """
1774
+ if not (0 <= compression <= 1):
1775
+ raise ValueError("Compression must be in the range [0, 1]")
1776
+
1777
+ # Remap [0-1] to [0-0.75] and apply sigmoid compression in one shot
1778
+ scale_factor = compression * 0.75
1779
+ abs_latents = torch.abs(latents)
1780
+
1781
+ # Sigmoid compression: sigmoid shifts large values toward 0.2, small values stay ~1.0
1782
+ # When scale_factor=0, sigmoid term vanishes, when scale_factor=0.75, full effect
1783
+ sigmoid_term = torch.sigmoid(4.0 * scale_factor * (abs_latents - 1.0))
1784
+ scales = 1.0 - 0.8 * scale_factor * sigmoid_term
1785
+
1786
+ filtered = latents * scales
1787
+ return filtered
1788
+
1789
+
1790
+ def adain_filter_latent(
1791
+ latents: torch.Tensor, reference_latents: torch.Tensor, factor=1.0
1792
+ ):
1793
+ """
1794
+ Applies Adaptive Instance Normalization (AdaIN) to a latent tensor based on
1795
+ statistics from a reference latent tensor.
1796
+
1797
+ Args:
1798
+ latent (torch.Tensor): Input latents to normalize
1799
+ reference_latent (torch.Tensor): The reference latents providing style statistics.
1800
+ factor (float): Blending factor between original and transformed latent.
1801
+ Range: -10.0 to 10.0, Default: 1.0
1802
+
1803
+ Returns:
1804
+ torch.Tensor: The transformed latent tensor
1805
+ """
1806
+ result = latents.clone()
1807
+
1808
+ for i in range(latents.size(0)):
1809
+ for c in range(latents.size(1)):
1810
+ r_sd, r_mean = torch.std_mean(
1811
+ reference_latents[i, c], dim=None
1812
+ ) # index by original dim order
1813
+ i_sd, i_mean = torch.std_mean(result[i, c], dim=None)
1814
+
1815
+ result[i, c] = ((result[i, c] - i_mean) / i_sd) * r_sd + r_mean
1816
+
1817
+ result = torch.lerp(latents, result, factor)
1818
+ return result
1819
+
1820
+
1821
+ class LTXMultiScalePipeline:
1822
+ def _upsample_latents(
1823
+ self, latest_upsampler: LatentUpsampler, latents: torch.Tensor
1824
+ ):
1825
+ assert latents.device == latest_upsampler.device
1826
+
1827
+ latents = un_normalize_latents(
1828
+ latents, self.vae, vae_per_channel_normalize=True
1829
+ )
1830
+ upsampled_latents = latest_upsampler(latents)
1831
+ upsampled_latents = normalize_latents(
1832
+ upsampled_latents, self.vae, vae_per_channel_normalize=True
1833
+ )
1834
+ return upsampled_latents
1835
+
1836
+ def __init__(
1837
+ self, video_pipeline: LTXVideoPipeline, latent_upsampler: LatentUpsampler
1838
+ ):
1839
+ self.video_pipeline = video_pipeline
1840
+ self.vae = video_pipeline.vae
1841
+ self.latent_upsampler = latent_upsampler
1842
+
1843
+ def __call__(
1844
+ self,
1845
+ downscale_factor: float,
1846
+ first_pass: dict,
1847
+ second_pass: dict,
1848
+ *args: Any,
1849
+ **kwargs: Any,
1850
+ ) -> Any:
1851
+ original_kwargs = kwargs.copy()
1852
+ original_output_type = kwargs["output_type"]
1853
+ original_width = kwargs["width"]
1854
+ original_height = kwargs["height"]
1855
+
1856
+ x_width = int(kwargs["width"] * downscale_factor)
1857
+ downscaled_width = x_width - (x_width % self.video_pipeline.vae_scale_factor)
1858
+ x_height = int(kwargs["height"] * downscale_factor)
1859
+ downscaled_height = x_height - (x_height % self.video_pipeline.vae_scale_factor)
1860
+
1861
+ kwargs["output_type"] = "latent"
1862
+ kwargs["width"] = downscaled_width
1863
+ kwargs["height"] = downscaled_height
1864
+ kwargs.update(**first_pass)
1865
+ result = self.video_pipeline(*args, **kwargs)
1866
+ latents = result.images
1867
+
1868
+ upsampled_latents = self._upsample_latents(self.latent_upsampler, latents)
1869
+ upsampled_latents = adain_filter_latent(
1870
+ latents=upsampled_latents, reference_latents=latents
1871
+ )
1872
+
1873
+ kwargs = original_kwargs
1874
+
1875
+ kwargs["latents"] = upsampled_latents
1876
+ kwargs["output_type"] = original_output_type
1877
+ kwargs["width"] = downscaled_width * 2
1878
+ kwargs["height"] = downscaled_height * 2
1879
+ kwargs.update(**second_pass)
1880
+
1881
+ result = self.video_pipeline(*args, **kwargs)
1882
+ if original_output_type != "latent":
1883
+ num_frames = result.images.shape[2]
1884
+ videos = rearrange(result.images, "b c f h w -> (b f) c h w")
1885
+
1886
+ videos = F.interpolate(
1887
+ videos,
1888
+ size=(original_height, original_width),
1889
+ mode="bilinear",
1890
+ align_corners=False,
1891
+ )
1892
+ videos = rearrange(videos, "(b f) c h w -> b c f h w", f=num_frames)
1893
+ result.images = videos
1894
+
1895
+ return result
requirements.txt CHANGED
@@ -12,7 +12,7 @@ imageio-ffmpeg
12
  einops
13
  timm
14
  av
15
- flash-attn-3@https://huggingface.co/alexnasa/flash-attn-3/resolve/main/128/flash_attn_3-3.0.0b1-cp39-abi3-linux_x86_64.whl
16
  git+https://github.com/huggingface/diffusers.git@main
17
 
18
 
 
12
  einops
13
  timm
14
  av
15
+ #flash-attn-3@https://huggingface.co/alexnasa/flash-attn-3/resolve/main/128/flash_attn_3-3.0.0b1-cp39-abi3-linux_x86_64.whl
16
  git+https://github.com/huggingface/diffusers.git@main
17
 
18
 
setup.py CHANGED
@@ -2,179 +2,173 @@
2
  #
3
  # Copyright (C) August 4, 2025 Carlos Rodrigues dos Santos
4
  #
5
- # Versão 2.3.0 (Setup Robusto e Idempotente)
6
- # - Verifica a existência de repositórios e arquivos de modelo antes de baixar.
7
- # - Pula downloads se os artefatos existirem, sem gerar erros.
8
- # - Unifica o download de todas as dependências (Git, LTX Models, SeedVR Models).
9
 
10
  import os
11
  import subprocess
12
  import sys
13
  from pathlib import Path
14
  import yaml
15
- from huggingface_hub import hf_hub_download
16
 
17
- # --- Configuração Geral ---
 
 
 
18
  DEPS_DIR = Path("/data")
 
19
 
20
- # --- Configuração Específica LTX-Video ---
21
  LTX_VIDEO_REPO_DIR = DEPS_DIR / "LTX-Video"
 
 
 
22
 
23
- # --- Configuração Específica SeedVR ---
24
- SEEDVR_MODELS_DIR = DEPS_DIR / "SeedVR"
25
-
26
- # --- Repositórios para Clonar ---
27
  REPOS_TO_CLONE = {
28
  "LTX-Video": "https://huggingface.co/spaces/Lightricks/ltx-video-distilled",
29
  "SeedVR": "https://github.com/numz/ComfyUI-SeedVR2_VideoUpscaler",
30
- "MMAudio": "https://github.com/hkchengrex/MMAudio.git"
31
  }
32
 
 
 
 
 
33
  def run_command(command, cwd=None):
34
- """Executa um comando no terminal e lida com erros."""
35
  print(f"Executando: {' '.join(command)}")
36
  try:
37
  subprocess.run(
38
- command,
39
- check=True,
40
- cwd=cwd,
41
- stdin=subprocess.DEVNULL,
42
  )
43
  except subprocess.CalledProcessError as e:
44
- print(f"ERRO: O comando falhou com o código de saída {e.returncode}\nStderr: {e.stderr}")
45
  sys.exit(1)
46
  except FileNotFoundError:
47
- print(f"ERRO: O comando '{command[0]}' não foi encontrado. Certifique-se de que o git está instalado e no seu PATH.")
48
  sys.exit(1)
49
 
50
- # --- Funções de Download (LTX-Video) ---
51
-
52
  def _load_ltx_config():
53
  """Carrega o arquivo de configuração YAML do LTX-Video."""
54
  print("--- Carregando Configuração do LTX-Video ---")
55
- base = LTX_VIDEO_REPO_DIR / "configs"
56
- candidates = [
57
- base / "ltxv-13b-0.9.8-dev-fp8.yaml",
58
- base / "ltxv-13b-0.9.8-distilled-fp8.yaml",
59
- base / "ltxv-13b-0.9.8-distilled.yaml",
60
- ]
61
- for cfg_path in candidates:
62
- if cfg_path.exists():
63
- print(f"Configuração encontrada: {cfg_path}")
64
- with open(cfg_path, "r") as file:
65
- return yaml.safe_load(file)
66
-
67
- fallback_path = base / "ltxv-13b-0.9.8-distilled-fp8.yaml"
68
- print(f"AVISO: Nenhuma configuração preferencial encontrada. Usando fallback: {fallback_path}")
69
- if not fallback_path.exists():
70
- print(f"ERRO: Arquivo de configuração fallback '{fallback_path}' não encontrado.")
71
  return None
72
-
73
- with open(fallback_path, "r") as file:
74
  return yaml.safe_load(file)
75
 
76
- def _download_ltx_models(config):
77
- """Baixa os modelos principais do LTX-Video, pulando os que existem."""
78
- print("\n--- Verificando Modelos do LTX-Video ---")
79
- LTX_REPO = "Lightricks/LTX-Video"
80
-
81
- if "checkpoint_path" not in config or "spatial_upscaler_model_path" not in config:
82
- print("ERRO: Chaves de modelo não encontradas no arquivo de configuração do LTX.")
83
- sys.exit(1)
84
-
85
- models_to_download = {
86
- config["checkpoint_path"]: "checkpoint principal",
87
- config["spatial_upscaler_model_path"]: "upscaler espacial"
88
- }
89
-
90
- # O hf_hub_download já verifica o cache, mas vamos verificar o diretório final para clareza
91
- # e para garantir que a lógica seja explícita.
92
- for filename, description in models_to_download.items():
93
- # A biblioteca huggingface_hub gerencia o local exato, então confiamos nela.
94
- # A verificação aqui é para garantir que o download seja tentado.
95
- print(f"Garantindo a existência do {description}: {filename}...")
96
- try:
97
- hf_hub_download(
98
- repo_id=LTX_REPO, filename=filename,
99
- local_dir=os.getenv("HF_HOME"), cache_dir=os.getenv("HF_HOME_CACHE"), token=os.getenv("HF_TOKEN")
100
- )
101
- print(f"{description.capitalize()} está disponível.")
102
- except Exception as e:
103
- print(f"ERRO ao baixar o {description}: {e}")
104
- sys.exit(1)
105
-
106
-
107
- def _download_seedvr_models():
108
- """Baixa os modelos do SeedVR, pulando os que já existem."""
109
- print(f"\n--- Verificando Checkpoints do SeedVR em {SEEDVR_MODELS_DIR} ---")
110
- SEEDVR_MODELS_DIR.mkdir(exist_ok=True)
111
-
112
- model_files = {
113
- "seedvr2_ema_7b_fp16.safetensors": "MonsterMMORPG/SeedVR2_SECourses",
114
- "seedvr2_ema_7b_sharp_fp16.safetensors": "MonsterMMORPG/SeedVR2_SECourses",
115
- "seedvr2_ema_3b_fp16.safetensors": "MonsterMMORPG/SeedVR2_SECourses",
116
- "ema_vae_fp16.safetensors": "MonsterMMORPG/SeedVR2_SECourses",
117
- "pos_emb.pt": "ByteDance-Seed/SeedVR2-3B",
118
- "neg_emb.pt": "ByteDance-Seed/SeedVR2-3B"
119
- }
120
 
121
- for filename, repo_id in model_files.items():
122
- local_path = SEEDVR_MODELS_DIR / filename
123
- if not local_path.is_file(): # Verifica se é um arquivo
124
- print(f"Baixando {filename} de {repo_id}...")
125
- try:
126
  hf_hub_download(
127
- repo_id=repo_id,
128
- filename=filename,
129
- local_dir=str(SEEDVR_MODELS_DIR),
130
- cache_dir=os.getenv("HF_HOME_CACHE"),
131
  token=os.getenv("HF_TOKEN"),
132
  )
133
- print(f"'{filename}' baixado com sucesso.")
134
- except Exception as e:
135
- print(f"ERRO ao baixar o modelo SeedVR '{filename}': {e}")
136
- sys.exit(1)
137
- else:
138
- print(f"Arquivo '{filename}' já existe. Pulando.")
139
- print("Checkpoints do SeedVR estão no local correto.")
 
 
 
 
140
 
141
- # --- Função Principal ---
 
 
142
 
143
  def main():
144
- print("--- Iniciando Setup do Ambiente ADUC-SDR (Versão Robusta) ---")
 
145
  DEPS_DIR.mkdir(exist_ok=True)
 
146
 
147
  # --- ETAPA 1: Clonar Repositórios ---
148
- print("\n--- ETAPA 1: Clonando Repositórios Git ---")
149
  for repo_name, repo_url in REPOS_TO_CLONE.items():
150
  repo_path = DEPS_DIR / repo_name
151
- if repo_path.is_dir(): # Verifica se é um diretório
152
- print(f"Repositório '{repo_name}' já existe. Pulando.")
153
  else:
154
  print(f"Clonando '{repo_name}' de {repo_url}...")
155
  run_command(["git", "clone", "--depth", "1", repo_url, str(repo_path)])
156
- print(f"'{repo_name}' clonado com sucesso.")
157
 
158
- # --- ETAPA 2: Baixar Modelos do LTX-Video ---
159
- print("\n--- ETAPA 2: Preparando Modelos LTX-Video ---")
160
- if not LTX_VIDEO_REPO_DIR.is_dir():
161
- print(f"ERRO: Diretório '{LTX_VIDEO_REPO_DIR}' não encontrado. Execute a clonagem primeiro.")
162
- sys.exit(1)
163
-
164
  ltx_config = _load_ltx_config()
165
- if ltx_config:
166
- _download_ltx_models(ltx_config)
167
- else:
168
  print("ERRO: Não foi possível carregar a configuração do LTX-Video. Abortando.")
169
  sys.exit(1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
170
 
171
- # --- ETAPA 3: Baixar Modelos do SeedVR ---
172
- print("\n--- ETAPA 3: Preparando Modelos SeedVR ---")
173
- _download_seedvr_models()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
174
 
175
- print("\n\n--- Setup do Ambiente Concluído com Sucesso! ---")
176
- print("Todos os repositórios e modelos necessários foram verificados e estão prontos.")
177
- print("Você agora pode iniciar a aplicação principal.")
178
 
179
  if __name__ == "__main__":
180
  main()
 
2
  #
3
  # Copyright (C) August 4, 2025 Carlos Rodrigues dos Santos
4
  #
5
+ # Versão 3.1.0 (Setup Unificado com LTX, SeedVR e VINCIE com Cache Robusto)
6
+ # - Orquestra a instalação de todos os repositórios e modelos para a suíte ADUC-SDR.
7
+ # - Usa snapshot_download para baixar dependências de forma eficiente e correta.
 
8
 
9
  import os
10
  import subprocess
11
  import sys
12
  from pathlib import Path
13
  import yaml
14
+ from huggingface_hub import hf_hub_download, snapshot_download
15
 
16
+ # ==============================================================================
17
+ # --- CONFIGURAÇÃO DE PATHS E CACHE ---
18
+ # ==============================================================================
19
+ # Assume que /data é um volume persistente montado no contêiner.
20
  DEPS_DIR = Path("/data")
21
+ CACHE_DIR = DEPS_DIR / ".cache" / "huggingface"
22
 
23
+ # --- Paths dos Módulos da Aplicação ---
24
  LTX_VIDEO_REPO_DIR = DEPS_DIR / "LTX-Video"
25
+ SEEDVR_MODELS_DIR = DEPS_DIR / "models" / "SeedVR"
26
+ VINCIE_REPO_DIR = DEPS_DIR / "VINCIE"
27
+ VINCIE_CKPT_DIR = DEPS_DIR / "ckpt" / "VINCIE-3B"
28
 
29
+ # --- Repositórios Git para Clonar ---
 
 
 
30
  REPOS_TO_CLONE = {
31
  "LTX-Video": "https://huggingface.co/spaces/Lightricks/ltx-video-distilled",
32
  "SeedVR": "https://github.com/numz/ComfyUI-SeedVR2_VideoUpscaler",
33
+ "VINCIE": "https://github.com/ByteDance-Seed/VINCIE",
34
  }
35
 
36
+ # ==============================================================================
37
+ # --- FUNÇÕES AUXILIARES ---
38
+ # ==============================================================================
39
+
40
  def run_command(command, cwd=None):
41
+ """Executa um comando no terminal de forma segura e com logs claros."""
42
  print(f"Executando: {' '.join(command)}")
43
  try:
44
  subprocess.run(
45
+ command, check=True, cwd=cwd,
46
+ stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True,
 
 
47
  )
48
  except subprocess.CalledProcessError as e:
49
+ print(f"ERRO: O comando falhou com o código {e.returncode}\nStderr:\n{e.stderr.strip()}")
50
  sys.exit(1)
51
  except FileNotFoundError:
52
+ print(f"ERRO: Comando '{command[0]}' não encontrado. Verifique se o git está instalado.")
53
  sys.exit(1)
54
 
 
 
55
  def _load_ltx_config():
56
  """Carrega o arquivo de configuração YAML do LTX-Video."""
57
  print("--- Carregando Configuração do LTX-Video ---")
58
+ config_file = LTX_VIDEO_REPO_DIR / "configs" / "ltxv-13b-0.9.8-distilled-fp8.yaml"
59
+ if not config_file.exists():
60
+ print(f"ERRO: Arquivo de configuração do LTX não encontrado em '{config_file}'")
 
 
 
 
 
 
 
 
 
 
 
 
 
61
  return None
62
+ print(f"Configuração LTX encontrada: {config_file}")
63
+ with open(config_file, "r") as file:
64
  return yaml.safe_load(file)
65
 
66
+ def _ensure_hf_model(repo_id, filenames=None, allow_patterns=None, local_dir=None):
67
+ """Função genérica para baixar um ou mais arquivos (hf_hub_download) ou um snapshot (snapshot_download)."""
68
+ if not repo_id: return
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69
 
70
+ print(f"Verificando/Baixando modelo do repositório: '{repo_id}'...")
71
+ try:
72
+ if filenames: # Baixa arquivos específicos
73
+ for filename in filenames:
74
+ if not filename: continue
75
  hf_hub_download(
76
+ repo_id=repo_id, filename=filename, cache_dir=str(CACHE_DIR),
77
+ local_dir=str(local_dir) if local_dir else None,
78
+ #local_dir_use_symlinks=False,
 
79
  token=os.getenv("HF_TOKEN"),
80
  )
81
+ else: # Baixa um snapshot (partes de um repositório)
82
+ snapshot_download(
83
+ repo_id=repo_id, cache_dir=str(CACHE_DIR),
84
+ local_dir=str(local_dir) if local_dir else None,
85
+ allow_patterns=allow_patterns,
86
+ token=os.getenv("HF_TOKEN"),
87
+ )
88
+ print(f"-> Modelo '{repo_id}' está disponível.")
89
+ except Exception as e:
90
+ print(f"ERRO CRÍTICO ao baixar o modelo '{repo_id}': {e}")
91
+ sys.exit(1)
92
 
93
+ # ==============================================================================
94
+ # --- FUNÇÃO PRINCIPAL DE SETUP ---
95
+ # ==============================================================================
96
 
97
  def main():
98
+ """Orquestra todo o processo de setup do ambiente."""
99
+ print("--- Iniciando Setup do Ambiente ADUC-SDR (LTX + SeedVR + VINCIE) ---")
100
  DEPS_DIR.mkdir(exist_ok=True)
101
+ CACHE_DIR.mkdir(parents=True, exist_ok=True)
102
 
103
  # --- ETAPA 1: Clonar Repositórios ---
104
+ print("\n--- ETAPA 1: Verificando Repositórios Git ---")
105
  for repo_name, repo_url in REPOS_TO_CLONE.items():
106
  repo_path = DEPS_DIR / repo_name
107
+ if repo_path.is_dir():
108
+ print(f"Repositório '{repo_name}' já existe em '{repo_path}'. Pulando.")
109
  else:
110
  print(f"Clonando '{repo_name}' de {repo_url}...")
111
  run_command(["git", "clone", "--depth", "1", repo_url, str(repo_path)])
112
+ print(f"-> '{repo_name}' clonado com sucesso.")
113
 
114
+ # --- ETAPA 2: Baixar Modelos LTX-Video e Dependências ---
115
+ print("\n--- ETAPA 2: Verificando Modelos LTX-Video e Dependências ---")
 
 
 
 
116
  ltx_config = _load_ltx_config()
117
+ if not ltx_config:
 
 
118
  print("ERRO: Não foi possível carregar a configuração do LTX-Video. Abortando.")
119
  sys.exit(1)
120
+
121
+ _ensure_hf_model(
122
+ repo_id="Lightricks/LTX-Video",
123
+ filenames=[
124
+ ltx_config.get("checkpoint_path"),
125
+ ltx_config.get("spatial_upscaler_model_path") # <-- Adicione esta linha
126
+ ]
127
+ )
128
+
129
+ _ensure_hf_model(
130
+ repo_id=ltx_config.get("text_encoder_model_name_or_path"),
131
+ allow_patterns=["*.json", "*.safetensors"]
132
+ )
133
+
134
+ enhancer_repos = [
135
+ ltx_config.get("prompt_enhancer_image_caption_model_name_or_path"),
136
+ ltx_config.get("prompt_enhancer_llm_model_name_or_path"),
137
+ ]
138
+ for repo_id in filter(None, enhancer_repos):
139
+ _ensure_hf_model(repo_id=repo_id, allow_patterns=["*.json", "*.safetensors", "*.bin"])
140
 
141
+ # --- ETAPA 3: Baixar Modelos SeedVR ---
142
+ print("\n--- ETAPA 3: Verificando Modelos SeedVR ---")
143
+ SEEDVR_MODELS_DIR.mkdir(parents=True, exist_ok=True)
144
+ seedvr_files = {
145
+ "seedvr2_ema_7b_fp16.safetensors": "MonsterMMORPG/SeedVR2_SECourses",
146
+ "seedvr2_ema_7b_sharp_fp16.safetensors": "MonsterMMORPG/SeedVR2_SECourses",
147
+ "ema_vae_fp16.safetensors": "MonsterMMORPG/SeedVR2_SECourses",
148
+ }
149
+ for filename, repo_id in seedvr_files.items():
150
+ if not (SEEDVR_MODELS_DIR / filename).is_file():
151
+ _ensure_hf_model(repo_id=repo_id, filenames=[filename], local_dir=SEEDVR_MODELS_DIR)
152
+ else:
153
+ print(f"Arquivo SeedVR '{filename}' já existe. Pulando.")
154
+
155
+ # --- ETAPA 4: Baixar Modelos VINCIE ---
156
+ print("\n--- ETAPA 4: Verificando Modelos VINCIE ---")
157
+ VINCIE_CKPT_DIR.mkdir(parents=True, exist_ok=True)
158
+ _ensure_hf_model(repo_id="ByteDance-Seed/VINCIE-3B", local_dir=VINCIE_CKPT_DIR)
159
+
160
+ # Cria o symlink de compatibilidade, se necessário
161
+ repo_ckpt_dir = VINCIE_REPO_DIR / "ckpt"
162
+ repo_ckpt_dir.mkdir(parents=True, exist_ok=True)
163
+ link = repo_ckpt_dir / "VINCIE-3B"
164
+ if not link.exists():
165
+ link.symlink_to(VINCIE_CKPT_DIR.resolve(), target_is_directory=True)
166
+ print(f"-> Symlink de compatibilidade VINCIE criado: '{link}' -> '{VINCIE_CKPT_DIR.resolve()}'")
167
+ else:
168
+ print(f"-> Symlink de compatibilidade VINCIE já existe.")
169
 
170
+ print("\n\n--- Setup Completo do Ambiente ADUC-SDR Concluído com Sucesso! ---")
171
+ print("Todos os repositórios e modelos foram verificados e estão prontos para uso.")
 
172
 
173
  if __name__ == "__main__":
174
  main()
start.sh CHANGED
@@ -1,49 +1,88 @@
1
- #!/usr/bin/env bash
2
- set -euo pipefail
3
 
4
 
 
5
 
6
- tree -L 4 /app
7
- tree -L 4 /data
8
 
9
- echo "🚀 Iniciando o script de setup e lançamento do LTX-Video..."
10
- echo "Usuário atual: $(whoami)"
 
 
 
11
 
12
- # Define as variáveis de ambiente que o LTXServer irá consumir
13
- export HF_HOME="${HF_HOME:-/data/.cache/huggingface}"
14
- export OUTPUT_ROOT="${OUTPUT_ROOT:-/app/outputs/ltx}"
15
- export LTXV_FRAME_LOG_EVERY=8
16
- export LTXV_DEBUG=1
17
 
 
 
 
 
 
18
 
19
- # --- Garante que Diretórios Existam ---
20
- mkdir -p "$OUTPUT_ROOT" "$HF_HOME"
 
 
 
21
 
 
 
 
 
 
 
22
 
23
- # 1) Builder (garante Apex/Flash e deps CUDA)
24
- #echo "🛠️ Iniciando o builder.sh para compilar/instalar dependências CUDA..."
25
- #if [ -f "/app/builder.sh" ]; then
26
- # /bin/bash /app/builder.sh
27
- # echo "✅ Builder finalizado."
28
- #else
29
- # echo "⚠️ Aviso: builder.sh não encontrado. Pulando etapa de compilação de dependências."
30
- #fi
31
 
32
- python setup.py
 
 
 
33
 
34
- cp -rfv /app/LTX-Video/ /data/
 
 
 
 
 
35
 
36
- export OUTPUT_ROOT="${OUTPUT_ROOT:-/app/outputs}"
37
- export INPUT_ROOT="${INPUT_ROOT:-/app/inputs}"
 
38
 
39
- mkdir -p "$OUTPUT_ROOT" "$INPUT_ROOT"
40
- echo "[aduc][start] Verificando ambiente como usuário: $(whoami)"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
 
42
- # Env da UI
43
- export GRADIO_SERVER_NAME="0.0.0.0"
44
- export GRADIO_SERVER_PORT="${PORT:-7860}"
45
- export GRADIO_ENABLE_QUEUE="True"
46
 
47
- echo "[ltx][start] Lançando app_ltx.py..."
48
- # Executa diretamente o python.
49
- exec python app.py
 
 
 
 
 
1
+ #!/bin/bash
 
2
 
3
 
4
+ cp /app/LTX-Video/. /data/LTX-Video -rdfv
5
 
6
+ tree -L 6 /data
 
7
 
8
+ # ==============================================================================
9
+ # GERENCIAMENTO DE LOGS NA INICIALIZAÇÃO
10
+ # ==============================================================================
11
+ mkdir /data/logs
12
+ LOG_FILE="/data/logs/session.log"
13
 
14
+ # Verifica se o arquivo de log da sessão anterior existe e não está vazio
15
+ if [ -f "$LOG_FILE" ] && [ -s "$LOG_FILE" ]; then
16
+ echo "[STARTUP] Log da sessão anterior encontrado. Preparando para upload."
 
 
17
 
18
+ # Cria um nome de arquivo com timestamp para o upload
19
+ TODAY=$(date +%Y-%m-%d)
20
+ TIMESTAMP=$(date +%H-%M-%S)
21
+ UPLOAD_FILENAME="log-${TIMESTAMP}.txt"
22
+ export REPO_PATH="logs/${TODAY}/${UPLOAD_FILENAME}"
23
 
24
+ # Move o log antigo para um local temporário para evitar que a aplicação comece a escrever nele
25
+ TEMP_LOG_PATH="/data/previous_session.log"
26
+ mv "$LOG_FILE" "$TEMP_LOG_PATH"
27
+
28
+ echo "[STARTUP] Fazendo upload de '$TEMP_LOG_PATH' para o repositório em '$REPO_PATH'..."
29
 
30
+ # Executa o script de upload do Python em segundo plano para não bloquear a inicialização
31
+ # O token HF_TOKEN deve estar definido como uma variável de ambiente no seu contêiner
32
+ python - <<'PY' &
33
+ import os
34
+ import time
35
+ from huggingface_hub import HfApi, HfFolder
36
 
37
+ # Adiciona uma pequena espera para garantir que a rede esteja pronta
38
+ time.sleep(5)
 
 
 
 
 
 
39
 
40
+ repo = os.environ.get("SELF_HF_REPO_ID", "eeuuia/Tmp")
41
+ token = os.getenv("HF_TOKEN")
42
+ log_to_upload = "/data/previous_session.log"
43
+ repo_path = os.getenv("REPO_PATH",'logs/log.log')
44
 
45
+ if not token:
46
+ print("[UPLOAD_SCRIPT] AVISO: HF_TOKEN ausente; upload do log desabilitado.")
47
+ # Limpa o arquivo temporário mesmo assim
48
+ if os.path.exists(log_to_upload):
49
+ os.remove(log_to_upload)
50
+ exit()
51
 
52
+ if not repo_path:
53
+ print("[UPLOAD_SCRIPT] ERRO: REPO_PATH não definido.")
54
+ exit()
55
 
56
+ try:
57
+ print(f"[UPLOAD_SCRIPT] Iniciando upload para {repo}...")
58
+ api = HfApi(token=token)
59
+ api.upload_file(
60
+ path_or_fileobj=log_to_upload,
61
+ path_in_repo=repo_path,
62
+ repo_id=repo,
63
+ repo_type="model",
64
+ )
65
+ print(f"[UPLOAD_SCRIPT] Upload de log concluído com sucesso para: {repo_path}")
66
+ finally:
67
+ # Garante que o arquivo de log temporário seja sempre removido após a tentativa de upload
68
+ if os.path.exists(log_to_upload):
69
+ os.remove(log_to_upload)
70
+ print("[UPLOAD_SCRIPT] Arquivo de log temporário limpo.")
71
+ PY
72
+
73
+ else
74
+ echo "[STARTUP] Nenhum log da sessão anterior encontrado. Iniciando com um log limpo."
75
+ fi
76
 
77
+ # ==============================================================================
78
+ # INICIALIZAÇÃO DA APLICAÇÃO PRINCIPAL
79
+ # ==============================================================================
80
+ echo "[STARTUP] Iniciando a aplicação principal Gradio (app.py)..."
81
 
82
+ # Executa o setup.py primeiro para garantir que as dependências estão prontas
83
+ python /app/setup.py
84
+
85
+ # Inicia a aplicação Gradio
86
+ # O `exec` substitui o processo do shell pelo processo do python,
87
+ # o que é uma boa prática para scripts de inicialização de contêineres.
88
+ exec python /app/app.py