cagrigungor commited on
Commit
440d996
·
verified ·
1 Parent(s): d581498

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +27 -38
app.py CHANGED
@@ -1,70 +1,59 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
 
4
-
5
  def respond(
6
  message,
7
  history: list[dict[str, str]],
8
  system_message,
9
- max_tokens,
10
- temperature,
11
- top_p,
12
  hf_token: gr.OAuthToken,
13
  ):
14
  """
15
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
 
16
  """
17
- client = InferenceClient(token=hf_token.token, model="openai/gpt-oss-20b")
18
-
19
- messages = [{"role": "system", "content": system_message}]
20
-
21
- messages.extend(history)
22
 
23
- messages.append({"role": "user", "content": message})
 
24
 
25
- response = ""
 
 
 
26
 
27
- for message in client.chat_completion(
28
- messages,
29
- max_tokens=max_tokens,
30
- stream=True,
31
- temperature=temperature,
32
- top_p=top_p,
33
- ):
34
- choices = message.choices
35
- token = ""
36
- if len(choices) and choices[0].delta.content:
37
- token = choices[0].delta.content
38
 
39
- response += token
40
- yield response
41
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
  chatbot = gr.ChatInterface(
47
  respond,
48
  type="messages",
49
  additional_inputs=[
50
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
51
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
52
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
53
- gr.Slider(
54
- minimum=0.1,
55
- maximum=1.0,
56
- value=0.95,
57
- step=0.05,
58
- label="Top-p (nucleus sampling)",
59
  ),
60
  ],
 
 
 
 
 
 
 
61
  )
62
 
63
  with gr.Blocks() as demo:
64
  with gr.Sidebar():
65
  gr.LoginButton()
 
 
66
  chatbot.render()
67
 
68
-
69
  if __name__ == "__main__":
70
  demo.launch()
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
 
 
4
  def respond(
5
  message,
6
  history: list[dict[str, str]],
7
  system_message,
 
 
 
8
  hf_token: gr.OAuthToken,
9
  ):
10
  """
11
+ Türkçe toksisite sınıflandırıcısı (cagrigungor/turkishtoxic-classifier)
12
+ Bu fonksiyon, kullanıcının yazdığı mesajı model API üzerinden sınıflandırır.
13
  """
 
 
 
 
 
14
 
15
+ # Hugging Face Inference API client
16
+ client = InferenceClient(model="cagrigungor/turkishtoxic-classifier", token=hf_token.token)
17
 
18
+ # Modeli çağır
19
+ result = client.text_classification(message)
20
+ label = result[0]["label"]
21
+ score = round(result[0]["score"], 3)
22
 
23
+ # Cevap formatı
24
+ if label == "toxic":
25
+ answer = f"⚠️ **Toksik içerik tespit edildi.**\n\nSkor: {score}"
26
+ else:
27
+ answer = f"✅ **Temiz içerik (notoxic)**\n\nSkor: {score}"
 
 
 
 
 
 
28
 
29
+ yield answer
 
30
 
31
 
32
+ # --- Gradio Chat Interface ---
 
 
33
  chatbot = gr.ChatInterface(
34
  respond,
35
  type="messages",
36
  additional_inputs=[
37
+ gr.Textbox(
38
+ value="Türkçe metinlerde küfür, hakaret ve saldırgan dil tespiti yapar.",
39
+ label="Sistem Mesajı",
 
 
 
 
 
 
40
  ),
41
  ],
42
+ title="🇹🇷 Türkçe Toksisite Chatbot",
43
+ description="Bu chatbot, kullanıcı mesajlarını analiz ederek toksik (küfür/hakaret içeren) olup olmadığını belirtir.\n\nModel: **cagrigungor/turkishtoxic-classifier**",
44
+ examples=[
45
+ ["Bugün hava çok güzel."],
46
+ ["Sen tam bir salaksın!"],
47
+ ["Böyle konuşmalar hoş değil."],
48
+ ],
49
  )
50
 
51
  with gr.Blocks() as demo:
52
  with gr.Sidebar():
53
  gr.LoginButton()
54
+ gr.Markdown("## 🔐 Hugging Face hesabınızla giriş yapın")
55
+ gr.Markdown("Giriş yaptıktan sonra model otomatik olarak API erişimiyle çalışır (CPU yeterlidir).")
56
  chatbot.render()
57
 
 
58
  if __name__ == "__main__":
59
  demo.launch()