Spaces:
Paused
Paused
Update app_vince.py
Browse files- app_vince.py +137 -157
app_vince.py
CHANGED
|
@@ -1,201 +1,181 @@
|
|
| 1 |
#!/usr/bin/env python3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import os
|
| 3 |
from pathlib import Path
|
| 4 |
from typing import List, Tuple, Optional
|
|
|
|
| 5 |
import gradio as gr
|
| 6 |
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
|
|
|
| 9 |
svc = VincieService()
|
| 10 |
-
|
| 11 |
-
svc.ckpt_dir = Path(svc.ckpt_dir)
|
| 12 |
-
|
| 13 |
-
DEFAULT_NEGATIVE_PROMPT = (
|
| 14 |
-
"Worst quality, Normal quality, Low quality, Low res, Blurry, Jpeg artifacts, Grainy, "
|
| 15 |
-
"text, logo, watermark, banner, extra digits, signature, subtitling, Bad anatomy, "
|
| 16 |
-
"Bad proportions, Deformed, Disconnected limbs, Disfigured, Extra arms, Extra limbs, "
|
| 17 |
-
"Extra hands, Fused fingers, Gross proportions, Long neck, Malformed limbs, Mutated, "
|
| 18 |
-
"Mutated hands, Mutated limbs, Missing arms, Missing fingers, Poorly drawn hands, "
|
| 19 |
-
"Poorly drawn face, Nsfw, Uncensored, Cleavage, Nude, Nipples, Overexposed, "
|
| 20 |
-
"Plain background, Grainy, Underexposed, Deformed structures"
|
| 21 |
-
)
|
| 22 |
|
| 23 |
def setup_auto() -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
try:
|
| 25 |
svc.ensure_repo()
|
| 26 |
svc.ensure_model()
|
| 27 |
-
return
|
|
|
|
|
|
|
|
|
|
| 28 |
except Exception as e:
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
return f"A configuração encontrou um erro: {e}"
|
| 32 |
|
| 33 |
def _list_media(out_dir: Path, max_images: int = 24) -> Tuple[List[str], Optional[str]]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
img_globs = ("*.png", "*.jpg", "*.jpeg", "*.webp")
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
images = []
|
| 42 |
-
image_paths = [str(p) for p in images[-max_images:]]
|
| 43 |
-
try:
|
| 44 |
-
videos = sorted(out_dir.rglob("*.mp4"), key=lambda p: p.stat().st_mtime)
|
| 45 |
-
except FileNotFoundError:
|
| 46 |
-
videos = []
|
| 47 |
video_path = str(videos[-1]) if videos else None
|
| 48 |
return image_paths, video_path
|
| 49 |
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
if not turns_text or not turns_text.strip():
|
| 54 |
-
return [], None, "
|
|
|
|
| 55 |
turns = [ln.strip() for ln in turns_text.splitlines() if ln.strip()]
|
| 56 |
try:
|
| 57 |
-
out_dir = svc.multi_turn_edit(
|
| 58 |
-
input_image,
|
| 59 |
-
turns,
|
| 60 |
-
negative_prompt=negative_prompt,
|
| 61 |
-
seed=int(seed),
|
| 62 |
-
steps=int(steps),
|
| 63 |
-
cfg_scale=float(cfg_scale),
|
| 64 |
-
resolution=int(resolution),
|
| 65 |
-
use_vae_slicing=use_vae_slicing,
|
| 66 |
-
num_gpus=int(num_gpus),
|
| 67 |
-
batch_size=int(batch_size),
|
| 68 |
-
)
|
| 69 |
-
imgs, vid = _list_media(Path(out_dir))
|
| 70 |
-
return imgs, vid, f"Saídas salvas em: {out_dir}"
|
| 71 |
-
except Exception as e:
|
| 72 |
-
import traceback
|
| 73 |
-
print(traceback.format_exc())
|
| 74 |
-
return [], None, f"Erro na geração: {e}"
|
| 75 |
-
|
| 76 |
-
def ui_text_to_video(input_image, prompt, negative_prompt, seed, steps, cfg_scale, resolution, fps, use_vae_slicing, num_gpus, batch_size):
|
| 77 |
-
if not input_image:
|
| 78 |
-
return None, "Por favor, forneça uma imagem de entrada (frame inicial)."
|
| 79 |
-
if not prompt or not prompt.strip():
|
| 80 |
-
return None, "Por favor, forneça um prompt para o vídeo."
|
| 81 |
-
try:
|
| 82 |
-
out_dir = svc.text_to_video(
|
| 83 |
-
input_image,
|
| 84 |
-
prompt,
|
| 85 |
-
negative_prompt=negative_prompt,
|
| 86 |
-
seed=int(seed),
|
| 87 |
-
steps=int(steps),
|
| 88 |
-
cfg_scale=float(cfg_scale),
|
| 89 |
-
resolution=int(resolution),
|
| 90 |
-
fps=int(fps),
|
| 91 |
-
use_vae_slicing=use_vae_slicing,
|
| 92 |
-
num_gpus=int(num_gpus),
|
| 93 |
-
batch_size=int(batch_size),
|
| 94 |
-
)
|
| 95 |
-
_, vid = _list_media(Path(out_dir))
|
| 96 |
-
return vid, f"Vídeo salvo em: {out_dir}"
|
| 97 |
except Exception as e:
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
|
|
|
|
|
|
| 101 |
|
| 102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
if not files:
|
| 104 |
-
return [], None, "
|
| 105 |
-
if not descs_text:
|
| 106 |
-
return [], None, "
|
| 107 |
-
if not final_prompt:
|
| 108 |
-
return [], None, "
|
|
|
|
| 109 |
descs = [ln.strip() for ln in descs_text.splitlines() if ln.strip()]
|
| 110 |
if len(descs) != len(files):
|
| 111 |
-
return [], None, f"
|
|
|
|
| 112 |
try:
|
| 113 |
out_dir = svc.multi_concept_compose(files, descs, final_prompt)
|
| 114 |
-
imgs, vid = _list_media(Path(out_dir))
|
| 115 |
-
return imgs, vid, f"Saídas salvas em: {out_dir}"
|
| 116 |
except Exception as e:
|
| 117 |
-
|
| 118 |
-
print(traceback.format_exc())
|
| 119 |
-
return [], None, f"Erro na geração: {e}"
|
| 120 |
|
| 121 |
-
|
| 122 |
-
|
|
|
|
| 123 |
|
| 124 |
-
with gr.Row():
|
| 125 |
-
setup_out = gr.Textbox(label="Status da Configuração", interactive=False)
|
| 126 |
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
)
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
batch_size_mt = gr.Number(label="Batch Size por GPU", value=1, precision=0)
|
| 140 |
-
resolution_mt = gr.Slider(label="Resolução", minimum=256, maximum=1024, step=128, value=512)
|
| 141 |
-
use_vae_slicing_mt = gr.Checkbox(label="Usar VAE Slicing (Economiza VRAM)", value=True)
|
| 142 |
-
neg_prompt_mt = gr.Textbox(lines=3, label="Prompt Negativo", value=DEFAULT_NEGATIVE_PROMPT)
|
| 143 |
-
seed_mt = gr.Number(label="Seed (Semente)", value=1, precision=0)
|
| 144 |
-
steps_mt = gr.Slider(label="Passos de Inferência", minimum=10, maximum=100, step=1, value=50)
|
| 145 |
-
cfg_mt = gr.Slider(label="Escala de Orientação (CFG)", minimum=1.0, maximum=20.0, step=0.5, value=7.5)
|
| 146 |
-
run_mt = gr.Button("Executar Edição Multi-Turno", variant="primary")
|
| 147 |
-
gallery_mt = gr.Gallery(label="Imagens Geradas", columns=4, height="auto")
|
| 148 |
-
video_mt = gr.Video(label="Vídeo da Sequência (se disponível)")
|
| 149 |
-
status_mt = gr.Textbox(label="Status da Saída", interactive=False)
|
| 150 |
-
run_mt.click(
|
| 151 |
-
ui_multi_turn,
|
| 152 |
-
inputs=[img_mt, turns_mt, neg_prompt_mt, seed_mt, steps_mt, cfg_mt, resolution_mt, use_vae_slicing_mt, num_gpus_mt, batch_size_mt],
|
| 153 |
-
outputs=[gallery_mt, video_mt, status_mt]
|
| 154 |
)
|
|
|
|
| 155 |
|
| 156 |
-
with gr.
|
| 157 |
-
|
| 158 |
-
img_vid = gr.Image(type="filepath", label="Frame Inicial")
|
| 159 |
-
with gr.Column():
|
| 160 |
-
prompt_vid = gr.Textbox(lines=2, label="Prompt do Vídeo", placeholder="Ex: um gato andando pela sala")
|
| 161 |
-
with gr.Accordion("Configurações Avançadas e de Desempenho", open=True):
|
| 162 |
-
with gr.Row():
|
| 163 |
-
num_gpus_vid = gr.Slider(label="Número de GPUs", minimum=1, maximum=8, step=1, value=8)
|
| 164 |
-
batch_size_vid = gr.Number(label="Batch Size por GPU", value=1, precision=0)
|
| 165 |
-
resolution_vid = gr.Slider(label="Resolução", minimum=256, maximum=1024, step=128, value=512)
|
| 166 |
-
fps_vid = gr.Slider(label="Frames por Segundo (FPS)", minimum=1, maximum=24, step=1, value=2)
|
| 167 |
-
use_vae_slicing_vid = gr.Checkbox(label="Usar VAE Slicing (Economiza VRAM)", value=True)
|
| 168 |
-
neg_prompt_vid = gr.Textbox(lines=3, label="Prompt Negativo", value=DEFAULT_NEGATIVE_PROMPT)
|
| 169 |
-
seed_vid = gr.Number(label="Seed (Semente)", value=1, precision=0)
|
| 170 |
-
steps_vid = gr.Slider(label="Passos de Inferência", minimum=10, maximum=100, step=1, value=50)
|
| 171 |
-
cfg_vid = gr.Slider(label="Escala de Orientação (CFG)", minimum=1.0, maximum=20.0, step=0.5, value=7.5)
|
| 172 |
-
run_vid = gr.Button("Gerar Vídeo", variant="primary")
|
| 173 |
-
video_vid = gr.Video(label="Vídeo Gerado")
|
| 174 |
-
status_vid = gr.Textbox(label="Status da Saída", interactive=False)
|
| 175 |
-
run_vid.click(
|
| 176 |
-
ui_text_to_video,
|
| 177 |
-
inputs=[img_vid, prompt_vid, neg_prompt_vid, seed_vid, steps_vid, cfg_vid, resolution_vid, fps_vid, use_vae_slicing_vid, num_gpus_vid, batch_size_vid],
|
| 178 |
-
outputs=[video_vid, status_vid]
|
| 179 |
-
)
|
| 180 |
|
| 181 |
-
with gr.Tab("
|
| 182 |
with gr.Row():
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 193 |
ui_multi_concept,
|
| 194 |
-
inputs=[
|
| 195 |
-
outputs=[
|
| 196 |
)
|
| 197 |
|
|
|
|
| 198 |
demo.load(fn=setup_auto, outputs=setup_out)
|
| 199 |
|
| 200 |
if __name__ == "__main__":
|
| 201 |
-
demo.launch(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
VINCIE Service UI (Gradio)
|
| 4 |
+
- Automatic setup runs on app load (no manual setup button).
|
| 5 |
+
- Multi-turn editing and multi-concept composition front-end.
|
| 6 |
+
- Designed for NVIDIA L40S (SM 8.9) environments aligned with CUDA 12.x.
|
| 7 |
+
- Functional reference: ByteDance-Seed/VINCIE.
|
| 8 |
+
- Space and Docker developed by Carlex (contact below).
|
| 9 |
+
"""
|
| 10 |
+
|
| 11 |
import os
|
| 12 |
from pathlib import Path
|
| 13 |
from typing import List, Tuple, Optional
|
| 14 |
+
|
| 15 |
import gradio as gr
|
| 16 |
|
| 17 |
+
# Adapt this import to the project layout.
|
| 18 |
+
# Provide a VincieService with:
|
| 19 |
+
# - ensure_repo(): clones/updates upstream repo if missing
|
| 20 |
+
# - ensure_model(): downloads/validates checkpoints to /app/ckpt/VINCIE-3B
|
| 21 |
+
# - multi_turn_edit(image_path: str, turns: List[str]) -> str (output dir)
|
| 22 |
+
# - multi_concept_compose(files: List[str], descs: List[str], final_prompt: str) -> str (output dir)
|
| 23 |
+
from services.vincie import VincieService # change path if needed
|
| 24 |
|
| 25 |
+
# Instantiate the service (defaults to /app/VINCIE and /app/ckpt/VINCIE-3B)
|
| 26 |
svc = VincieService()
|
| 27 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
def setup_auto() -> str:
|
| 30 |
+
"""
|
| 31 |
+
Run an idempotent setup on interface load:
|
| 32 |
+
- Ensure the upstream repository is present and ready.
|
| 33 |
+
- Ensure the model checkpoint is downloaded and ready.
|
| 34 |
+
Returns an English status string for the UI.
|
| 35 |
+
"""
|
| 36 |
try:
|
| 37 |
svc.ensure_repo()
|
| 38 |
svc.ensure_model()
|
| 39 |
+
return (
|
| 40 |
+
"Setup completed successfully: repository and checkpoint are ready "
|
| 41 |
+
"for inference on an NVIDIA L40S environment."
|
| 42 |
+
)
|
| 43 |
except Exception as e:
|
| 44 |
+
return f"Setup encountered an error: {e}"
|
| 45 |
+
|
|
|
|
| 46 |
|
| 47 |
def _list_media(out_dir: Path, max_images: int = 24) -> Tuple[List[str], Optional[str]]:
|
| 48 |
+
"""
|
| 49 |
+
Enumerate resulting images and the most recent video from an output directory.
|
| 50 |
+
|
| 51 |
+
Args:
|
| 52 |
+
out_dir: Path to the directory where the service wrote its results.
|
| 53 |
+
max_images: Upper bound on how many images to surface in the gallery.
|
| 54 |
+
|
| 55 |
+
Returns:
|
| 56 |
+
A tuple (images, video) where:
|
| 57 |
+
- images is a list of file paths to images sorted by modified time,
|
| 58 |
+
- video is the path to the latest .mp4 if found, otherwise None.
|
| 59 |
+
"""
|
| 60 |
img_globs = ("*.png", "*.jpg", "*.jpeg", "*.webp")
|
| 61 |
+
images: List[Path] = []
|
| 62 |
+
for pat in img_globs:
|
| 63 |
+
images += list(out_dir.rglob(pat))
|
| 64 |
+
images = sorted(images, key=lambda p: p.stat().st_mtime)
|
| 65 |
+
image_paths = [str(p) for p in images[-max_images:]] if images else []
|
| 66 |
+
videos = sorted(out_dir.rglob("*.mp4"), key=lambda p: p.stat().st_mtime)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
video_path = str(videos[-1]) if videos else None
|
| 68 |
return image_paths, video_path
|
| 69 |
|
| 70 |
+
|
| 71 |
+
def ui_multi_turn(input_image: Optional[str], turns_text: Optional[str]):
|
| 72 |
+
"""
|
| 73 |
+
Multi-turn image editing entrypoint for the UI.
|
| 74 |
+
|
| 75 |
+
Args:
|
| 76 |
+
input_image: Path to a single input image on disk.
|
| 77 |
+
turns_text: User-provided editing turns, one instruction per line.
|
| 78 |
+
|
| 79 |
+
Returns:
|
| 80 |
+
(gallery, video, status) for Gradio components.
|
| 81 |
+
"""
|
| 82 |
+
if not input_image or not str(input_image).strip():
|
| 83 |
+
return [], None, "Please provide an input image."
|
| 84 |
if not turns_text or not turns_text.strip():
|
| 85 |
+
return [], None, "Please provide edit turns (one per line)."
|
| 86 |
+
|
| 87 |
turns = [ln.strip() for ln in turns_text.splitlines() if ln.strip()]
|
| 88 |
try:
|
| 89 |
+
out_dir = svc.multi_turn_edit(input_image, turns)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
except Exception as e:
|
| 91 |
+
return [], None, f"Generation error: {e}"
|
| 92 |
+
|
| 93 |
+
imgs, vid = _list_media(Path(out_dir))
|
| 94 |
+
status = f"Outputs saved to: {out_dir}"
|
| 95 |
+
return imgs, vid, status
|
| 96 |
|
| 97 |
+
|
| 98 |
+
def ui_multi_concept(files: Optional[List[str]], descs_text: Optional[str], final_prompt: Optional[str]):
|
| 99 |
+
"""
|
| 100 |
+
Multi-concept composition entrypoint for the UI.
|
| 101 |
+
|
| 102 |
+
Args:
|
| 103 |
+
files: List of paths to concept images on disk.
|
| 104 |
+
descs_text: Per-image descriptions (one line per image, in the same order).
|
| 105 |
+
final_prompt: A final composition prompt that aggregates the concepts.
|
| 106 |
+
|
| 107 |
+
Returns:
|
| 108 |
+
(gallery, video, status) for Gradio components.
|
| 109 |
+
"""
|
| 110 |
if not files:
|
| 111 |
+
return [], None, "Please upload concept images."
|
| 112 |
+
if not descs_text or not descs_text.strip():
|
| 113 |
+
return [], None, "Please provide descriptions (one per line)."
|
| 114 |
+
if not final_prompt or not final_prompt.strip():
|
| 115 |
+
return [], None, "Please provide a final prompt."
|
| 116 |
+
|
| 117 |
descs = [ln.strip() for ln in descs_text.splitlines() if ln.strip()]
|
| 118 |
if len(descs) != len(files):
|
| 119 |
+
return [], None, f"Descriptions count ({len(descs)}) must match images count ({len(files)})."
|
| 120 |
+
|
| 121 |
try:
|
| 122 |
out_dir = svc.multi_concept_compose(files, descs, final_prompt)
|
|
|
|
|
|
|
| 123 |
except Exception as e:
|
| 124 |
+
return [], None, f"Generation error: {e}"
|
|
|
|
|
|
|
| 125 |
|
| 126 |
+
imgs, vid = _list_media(Path(out_dir))
|
| 127 |
+
status = f"Outputs saved to: {out_dir}"
|
| 128 |
+
return imgs, vid, status
|
| 129 |
|
|
|
|
|
|
|
| 130 |
|
| 131 |
+
with gr.Blocks(title="VINCIE Service") as demo:
|
| 132 |
+
# Header and credits
|
| 133 |
+
gr.Markdown(
|
| 134 |
+
"\n".join(
|
| 135 |
+
[
|
| 136 |
+
"# VINCIE Service — Multi-turn Editing and Multi-concept Composition",
|
| 137 |
+
"- Automatic setup runs at startup; setup status appears below.",
|
| 138 |
+
"- Hardware requirement: NVIDIA L40S (SM 8.9) is recommended for this build.",
|
| 139 |
+
"- Functional upstream model: ByteDance-Seed/VINCIE (see project repository).",
|
| 140 |
+
"- Space and Docker were developed by Carlex.",
|
| 141 |
+
"- Contact: Email: Carlex22@gmail.com | GitHub: carlex22",
|
| 142 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
)
|
| 144 |
+
)
|
| 145 |
|
| 146 |
+
with gr.Row():
|
| 147 |
+
setup_out = gr.Textbox(label="Setup Status", interactive=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
|
| 149 |
+
with gr.Tab("Multi-turn Editing"):
|
| 150 |
with gr.Row():
|
| 151 |
+
img = gr.Image(type="filepath", label="Input image")
|
| 152 |
+
turns = gr.Textbox(lines=8, label="Turns (one per line)")
|
| 153 |
+
run1 = gr.Button("Run")
|
| 154 |
+
out_gallery = gr.Gallery(label="Images", columns=4, height="auto")
|
| 155 |
+
out_video = gr.Video(label="Video (if available)")
|
| 156 |
+
out_status = gr.Textbox(label="Output", interactive=False)
|
| 157 |
+
run1.click(ui_multi_turn, inputs=[img, turns], outputs=[out_gallery, out_video, out_status])
|
| 158 |
+
|
| 159 |
+
with gr.Tab("Multi-concept Composition"):
|
| 160 |
+
files = gr.File(file_count="multiple", type="filepath", label="Concept images")
|
| 161 |
+
descs = gr.Textbox(lines=8, label="Descriptions (one per line, same order as images)")
|
| 162 |
+
final_prompt = gr.Textbox(lines=2, label="Final prompt")
|
| 163 |
+
run2 = gr.Button("Run")
|
| 164 |
+
out_gallery2 = gr.Gallery(label="Images", columns=4, height="auto")
|
| 165 |
+
out_video2 = gr.Video(label="Video (if available)")
|
| 166 |
+
out_status2 = gr.Textbox(label="Output", interactive=False)
|
| 167 |
+
run2.click(
|
| 168 |
ui_multi_concept,
|
| 169 |
+
inputs=[files, descs, final_prompt],
|
| 170 |
+
outputs=[out_gallery2, out_video2, out_status2],
|
| 171 |
)
|
| 172 |
|
| 173 |
+
# Auto-setup on load (no manual button)
|
| 174 |
demo.load(fn=setup_auto, outputs=setup_out)
|
| 175 |
|
| 176 |
if __name__ == "__main__":
|
| 177 |
+
demo.launch(
|
| 178 |
+
server_name="0.0.0.0",
|
| 179 |
+
server_port=int(os.getenv("PORT", "7860")),
|
| 180 |
+
allowed_paths=["/app/outputs", "/app/ckpt"],
|
| 181 |
+
)
|