import gradio as gr import torch import torch.nn as nn import torchvision.transforms as transforms from PIL import Image from safetensors.torch import load_file from huggingface_hub import hf_hub_download # Model architecture class AdvancedCNN(nn.Module): def __init__(self, num_classes=10): super(AdvancedCNN, self).__init__() self.conv1 = nn.Conv2d(in_channels=3, out_channels=32 * 2, kernel_size=3, padding=1) self.conv2 = nn.Conv2d(in_channels=32 * 2, out_channels=64 * 2, kernel_size=3, padding=1) self.conv3 = nn.Conv2d(in_channels=64 * 2, out_channels=64 * 2, kernel_size=3, padding=1) self.conv4 = nn.Conv2d(in_channels=64 * 2, out_channels=128 * 2, kernel_size=3, padding=1) self.conv5 = nn.Conv2d(in_channels=128 * 2, out_channels=128 * 2, kernel_size=3, padding=1) self.conv6 = nn.Conv2d(in_channels=128 * 2, out_channels=128 * 2, kernel_size=3, padding=1) self.conv7 = nn.Conv2d(in_channels=128 * 2, out_channels=256 * 2, kernel_size=3, padding=1) self.conv8 = nn.Conv2d(in_channels=256 * 2, out_channels=256 * 2, kernel_size=3, padding=1) self.conv9 = nn.Conv2d(in_channels=256 * 2, out_channels=256 * 2, kernel_size=3, padding=1) self.bn1 = nn.BatchNorm2d(32 * 2) self.bn2 = nn.BatchNorm2d(128 * 2) self.bn3 = nn.BatchNorm2d(256 * 2) self.maxpool = nn.MaxPool2d(kernel_size=2, stride=2) self.dropout = nn.Dropout2d(0.2) self.fc1 = nn.Linear(4096 * 2, 4096 * 2) self.fc2 = nn.Linear(4096 * 2, 2048 * 2) self.fc3 = nn.Linear(2048 * 2, num_classes) self.relu = nn.ReLU() def forward(self, x): x = self.relu(self.bn1(self.conv1(x))) x = self.relu(self.conv2(x)) x = self.relu(self.conv3(x)) x = self.maxpool(x) x = self.relu(self.bn2(self.conv4(x))) x = self.relu(self.conv5(x)) x = self.relu(self.conv6(x)) x = self.maxpool(x) x = self.dropout(x) x = self.relu(self.bn3(self.conv7(x))) x = self.relu(self.conv8(x)) x = self.relu(self.conv9(x)) x = self.maxpool(x) x = self.dropout(x) x = torch.flatten(x, start_dim=1) x = self.relu(self.fc1(x)) x = self.relu(self.fc2(x)) x = self.dropout(x) x = self.fc3(x) return x # Load model with try/except device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") try: model = AdvancedCNN(num_classes=10).to(device) model_path = hf_hub_download(repo_id="chandu1617/CIFAR10-CNN_Model", filename="model.safetensors") state_dict = load_file(model_path) model.load_state_dict(state_dict) model.eval() load_status = "Model loaded successfully!" except Exception as e: load_status = f"Model load error: {str(e)}" # CIFAR-10 classes classes = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] # Image Preprocessing def preprocess_image(image): transform = transforms.Compose([ transforms.Resize((32, 32)), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) image = transform(image).unsqueeze(0) return image.to(device) # Predict function def predict(image): if image is None: return "Please upload an image." try: image = preprocess_image(image) with torch.no_grad(): output = model(image) prob = torch.softmax(output, dim=1) conf, predicted = torch.max(prob, 1) return f"Predicted: {classes[predicted.item()]} --> (Confidence: {conf.item()*100:.2f}%) => Overall Model Acc: 92.59%" except Exception as e: return f"Prediction error: {str(e)}\\n{load_status}" # Gradio interface interface = gr.Interface( fn=predict, inputs=gr.Image(type="pil", label="Upload an image (32x32 RGB recommended)"), outputs=gr.Textbox(label="Prediction"), title="🚀 CIFAR-10 CNN Classifier Demo", description="Upload a small RGB image to classify it. Model Acc: 92.59% on CIFAR-10 test set!", examples=[ ["https://www.cs.toronto.edu/~kriz/cifar-10-sample/airplane1.png"], ["https://www.cs.toronto.edu/~kriz/cifar-10-sample/cat1.png"], ["https://www.cs.toronto.edu/~kriz/cifar-10-sample/dog1.png"] ] ) if __name__ == "__main__": interface.launch()