Spaces:
Runtime error
Runtime error
Commit
·
c5a3315
1
Parent(s):
2b53c3e
Fox for Skimage deprecation of multichannel
Browse files- NNfunctions.py +98 -83
NNfunctions.py
CHANGED
|
@@ -26,21 +26,23 @@ from models import *
|
|
| 26 |
|
| 27 |
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
| 28 |
|
|
|
|
| 29 |
def remove_dataparallel_wrapper(state_dict):
|
| 30 |
-
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
|
| 38 |
-
|
| 39 |
-
for k, vl in state_dict.items():
|
| 40 |
-
name = k[7:] # remove 'module.' of DataParallel
|
| 41 |
-
new_state_dict[name] = vl
|
| 42 |
|
| 43 |
-
return new_state_dict
|
| 44 |
|
| 45 |
from argparse import Namespace
|
| 46 |
|
|
@@ -48,105 +50,106 @@ from argparse import Namespace
|
|
| 48 |
def GetOptions():
|
| 49 |
# training options
|
| 50 |
opt = Namespace()
|
| 51 |
-
opt.model =
|
| 52 |
opt.n_resgroups = 3
|
| 53 |
opt.n_resblocks = 10
|
| 54 |
opt.n_feats = 96
|
| 55 |
opt.reduction = 16
|
| 56 |
opt.narch = 0
|
| 57 |
-
opt.norm =
|
| 58 |
|
| 59 |
opt.cpu = False
|
| 60 |
opt.multigpu = False
|
| 61 |
opt.undomulti = False
|
| 62 |
-
opt.device = torch.device(
|
|
|
|
|
|
|
| 63 |
|
| 64 |
opt.imageSize = 512
|
| 65 |
opt.weights = "model/simrec_simin_gtout_rcan_512_2_ntrain790-final.pth"
|
| 66 |
opt.root = "model/0080.jpg"
|
| 67 |
opt.out = "model/myout"
|
| 68 |
|
| 69 |
-
opt.task =
|
| 70 |
opt.scale = 1
|
| 71 |
opt.nch_in = 9
|
| 72 |
opt.nch_out = 1
|
| 73 |
|
| 74 |
-
|
| 75 |
return opt
|
| 76 |
|
| 77 |
|
| 78 |
def GetOptions_allRnd_0215():
|
| 79 |
# training options
|
| 80 |
opt = Namespace()
|
| 81 |
-
opt.model =
|
| 82 |
opt.n_resgroups = 3
|
| 83 |
opt.n_resblocks = 10
|
| 84 |
opt.n_feats = 48
|
| 85 |
opt.reduction = 16
|
| 86 |
opt.narch = 0
|
| 87 |
-
opt.norm =
|
| 88 |
|
| 89 |
opt.cpu = False
|
| 90 |
opt.multigpu = False
|
| 91 |
opt.undomulti = False
|
| 92 |
-
opt.device = torch.device(
|
|
|
|
|
|
|
| 93 |
|
| 94 |
opt.imageSize = 512
|
| 95 |
opt.weights = "model/0216_SIMRec_0214_rndAll_rcan_continued.pth"
|
| 96 |
opt.root = "model/0080.jpg"
|
| 97 |
opt.out = "model/myout"
|
| 98 |
|
| 99 |
-
opt.task =
|
| 100 |
opt.scale = 1
|
| 101 |
opt.nch_in = 9
|
| 102 |
opt.nch_out = 1
|
| 103 |
|
| 104 |
-
|
| 105 |
return opt
|
| 106 |
|
| 107 |
|
| 108 |
-
|
| 109 |
def GetOptions_allRnd_0317():
|
| 110 |
# training options
|
| 111 |
opt = Namespace()
|
| 112 |
-
opt.model =
|
| 113 |
opt.n_resgroups = 3
|
| 114 |
opt.n_resblocks = 10
|
| 115 |
opt.n_feats = 96
|
| 116 |
opt.reduction = 16
|
| 117 |
opt.narch = 0
|
| 118 |
-
opt.norm =
|
| 119 |
|
| 120 |
opt.cpu = False
|
| 121 |
opt.multigpu = False
|
| 122 |
opt.undomulti = False
|
| 123 |
-
opt.device = torch.device(
|
|
|
|
|
|
|
| 124 |
|
| 125 |
opt.imageSize = 512
|
| 126 |
opt.weights = "model/DIV2K_randomised_3x3_20200317.pth"
|
| 127 |
opt.root = "model/0080.jpg"
|
| 128 |
opt.out = "model/myout"
|
| 129 |
|
| 130 |
-
opt.task =
|
| 131 |
opt.scale = 1
|
| 132 |
opt.nch_in = 9
|
| 133 |
opt.nch_out = 1
|
| 134 |
|
| 135 |
-
|
| 136 |
return opt
|
| 137 |
|
| 138 |
|
| 139 |
-
|
| 140 |
def LoadModel(opt):
|
| 141 |
-
print(
|
| 142 |
print(opt)
|
| 143 |
|
| 144 |
net = GetModel(opt)
|
| 145 |
-
print(
|
| 146 |
-
checkpoint = torch.load(opt.weights,map_location=opt.device)
|
| 147 |
|
| 148 |
if type(checkpoint) is dict:
|
| 149 |
-
state_dict = checkpoint[
|
| 150 |
else:
|
| 151 |
state_dict = checkpoint
|
| 152 |
|
|
@@ -157,22 +160,22 @@ def LoadModel(opt):
|
|
| 157 |
return net
|
| 158 |
|
| 159 |
|
| 160 |
-
def prepimg(stack,self):
|
| 161 |
-
|
| 162 |
inputimg = stack[:9]
|
| 163 |
|
| 164 |
if self.nch_in == 6:
|
| 165 |
-
inputimg = inputimg[[0,1,3,4,6,7]]
|
| 166 |
elif self.nch_in == 3:
|
| 167 |
-
inputimg = inputimg[[0,4,8]]
|
| 168 |
|
| 169 |
if inputimg.shape[1] > 512 or inputimg.shape[2] > 512:
|
| 170 |
-
print(
|
| 171 |
-
inputimg = inputimg[
|
| 172 |
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
|
|
|
| 176 |
# NCHW
|
| 177 |
# I = np.zeros((9,opt.imageSize,opt.imageSize),dtype='uint16')
|
| 178 |
|
|
@@ -183,86 +186,96 @@ def prepimg(stack,self):
|
|
| 183 |
# I[t,:,:] = frame
|
| 184 |
# inputimg = I
|
| 185 |
|
| 186 |
-
inputimg = np.rot90(inputimg,axes=(1,2))
|
| 187 |
-
inputimg = inputimg[
|
|
|
|
|
|
|
| 188 |
for i in range(len(inputimg)):
|
| 189 |
inputimg[i] = 100 / np.max(inputimg[i]) * inputimg[i]
|
| 190 |
-
elif
|
| 191 |
fac = float(self.norm[7:])
|
| 192 |
-
inputimg = np.rot90(inputimg,axes=(1,2))
|
| 193 |
-
inputimg = inputimg[
|
|
|
|
|
|
|
| 194 |
for i in range(len(inputimg)):
|
| 195 |
inputimg[i] = fac * 255 / np.max(inputimg[i]) * inputimg[i]
|
| 196 |
|
|
|
|
|
|
|
| 197 |
|
| 198 |
-
|
| 199 |
-
widefield = np.mean(inputimg,0)
|
| 200 |
-
|
| 201 |
-
if self.norm == 'adapthist':
|
| 202 |
for i in range(len(inputimg)):
|
| 203 |
-
inputimg[i] = exposure.equalize_adapthist(inputimg[i],clip_limit=0.001)
|
| 204 |
-
widefield = exposure.equalize_adapthist(widefield,clip_limit=0.001)
|
| 205 |
else:
|
| 206 |
# normalise
|
| 207 |
inputimg = torch.tensor(inputimg).float()
|
| 208 |
widefield = torch.tensor(widefield).float()
|
| 209 |
-
widefield = (widefield - torch.min(widefield)) / (
|
|
|
|
|
|
|
| 210 |
|
| 211 |
-
if self.norm ==
|
| 212 |
for i in range(len(inputimg)):
|
| 213 |
-
inputimg[i] = (inputimg[i] - torch.min(inputimg[i])) / (
|
| 214 |
-
|
|
|
|
|
|
|
| 215 |
fac = float(self.norm[6:])
|
| 216 |
for i in range(len(inputimg)):
|
| 217 |
-
inputimg[i] =
|
| 218 |
-
|
| 219 |
-
|
|
|
|
|
|
|
| 220 |
|
| 221 |
# otf = torch.tensor(otf.astype('float') / np.max(otf)).unsqueeze(0).float()
|
| 222 |
# gt = torch.tensor(gt.astype('float') / 255).unsqueeze(0).float()
|
| 223 |
# simimg = torch.tensor(simimg.astype('float') / 255).unsqueeze(0).float()
|
| 224 |
# widefield = torch.mean(inputimg,0).unsqueeze(0)
|
| 225 |
|
| 226 |
-
|
| 227 |
# normalise
|
| 228 |
# gt = (gt - torch.min(gt)) / (torch.max(gt) - torch.min(gt))
|
| 229 |
# simimg = (simimg - torch.min(simimg)) / (torch.max(simimg) - torch.min(simimg))
|
| 230 |
# widefield = (widefield - torch.min(widefield)) / (torch.max(widefield) - torch.min(widefield))
|
| 231 |
inputimg = torch.tensor(inputimg).float()
|
| 232 |
widefield = torch.tensor(widefield).float()
|
| 233 |
-
return inputimg,widefield
|
|
|
|
| 234 |
|
| 235 |
-
def save_image(data, filename,cmap):
|
| 236 |
sizes = np.shape(data)
|
| 237 |
fig = plt.figure()
|
| 238 |
-
fig.set_size_inches(1. * sizes[0] / sizes[1], 1, forward
|
| 239 |
-
ax = plt.Axes(fig, [0
|
| 240 |
ax.set_axis_off()
|
| 241 |
fig.add_axes(ax)
|
| 242 |
ax.imshow(data, cmap=cmap)
|
| 243 |
-
plt.savefig(filename, dpi
|
| 244 |
plt.close()
|
| 245 |
|
| 246 |
|
| 247 |
-
def EvaluateModel(net,opt,stack):
|
| 248 |
-
|
| 249 |
-
outfile =
|
| 250 |
-
outfile = 'ML-SIM_%s' % outfile
|
| 251 |
|
| 252 |
os.makedirs(opt.out, exist_ok=True)
|
| 253 |
|
| 254 |
print(stack.shape)
|
| 255 |
inputimg, widefield = prepimg(stack, opt)
|
| 256 |
|
| 257 |
-
if opt.norm ==
|
| 258 |
-
cmap =
|
| 259 |
else:
|
| 260 |
-
cmap =
|
| 261 |
|
| 262 |
# skimage.io.imsave('%s_wf.png' % outfile,(255*widefield.numpy()).astype('uint8'))
|
| 263 |
-
wf = (255*widefield.numpy()).astype(
|
| 264 |
-
wf_upscaled = skimage.transform.rescale(
|
| 265 |
-
|
|
|
|
|
|
|
| 266 |
|
| 267 |
# skimage.io.imsave('%s.tif' % outfile, inputimg.numpy())
|
| 268 |
|
|
@@ -271,21 +284,23 @@ def EvaluateModel(net,opt,stack):
|
|
| 271 |
with torch.no_grad():
|
| 272 |
sr = net(inputimg.to(opt.device))
|
| 273 |
sr = sr.cpu()
|
| 274 |
-
sr = torch.clamp(sr,min=0,max=1)
|
| 275 |
-
print(
|
| 276 |
|
| 277 |
pil_sr_img = toPIL(sr[0])
|
| 278 |
|
| 279 |
-
if opt.norm ==
|
| 280 |
-
pil_sr_img = transforms.functional.rotate(pil_sr_img
|
| 281 |
|
| 282 |
# pil_sr_img.save('%s.png' % outfile) # true output for downloading, no LUT
|
| 283 |
sr_img = np.array(pil_sr_img)
|
| 284 |
# sr_img = exposure.equalize_adapthist(sr_img,clip_limit=0.01)
|
| 285 |
-
skimage.io.imsave(
|
| 286 |
|
| 287 |
-
sr_img = skimage.transform.rescale(
|
|
|
|
|
|
|
| 288 |
|
| 289 |
-
save_image(sr_img,
|
| 290 |
-
return outfile +
|
| 291 |
# return wf, sr_img, outfile
|
|
|
|
| 26 |
|
| 27 |
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
| 28 |
|
| 29 |
+
|
| 30 |
def remove_dataparallel_wrapper(state_dict):
|
| 31 |
+
r"""Converts a DataParallel model to a normal one by removing the "module."
|
| 32 |
+
wrapper in the module dictionary
|
| 33 |
+
|
| 34 |
+
Args:
|
| 35 |
+
state_dict: a torch.nn.DataParallel state dictionary
|
| 36 |
+
"""
|
| 37 |
+
from collections import OrderedDict
|
| 38 |
|
| 39 |
+
new_state_dict = OrderedDict()
|
| 40 |
+
for k, vl in state_dict.items():
|
| 41 |
+
name = k[7:] # remove 'module.' of DataParallel
|
| 42 |
+
new_state_dict[name] = vl
|
| 43 |
|
| 44 |
+
return new_state_dict
|
|
|
|
|
|
|
|
|
|
| 45 |
|
|
|
|
| 46 |
|
| 47 |
from argparse import Namespace
|
| 48 |
|
|
|
|
| 50 |
def GetOptions():
|
| 51 |
# training options
|
| 52 |
opt = Namespace()
|
| 53 |
+
opt.model = "rcan"
|
| 54 |
opt.n_resgroups = 3
|
| 55 |
opt.n_resblocks = 10
|
| 56 |
opt.n_feats = 96
|
| 57 |
opt.reduction = 16
|
| 58 |
opt.narch = 0
|
| 59 |
+
opt.norm = "minmax"
|
| 60 |
|
| 61 |
opt.cpu = False
|
| 62 |
opt.multigpu = False
|
| 63 |
opt.undomulti = False
|
| 64 |
+
opt.device = torch.device(
|
| 65 |
+
"cuda" if torch.cuda.is_available() and not opt.cpu else "cpu"
|
| 66 |
+
)
|
| 67 |
|
| 68 |
opt.imageSize = 512
|
| 69 |
opt.weights = "model/simrec_simin_gtout_rcan_512_2_ntrain790-final.pth"
|
| 70 |
opt.root = "model/0080.jpg"
|
| 71 |
opt.out = "model/myout"
|
| 72 |
|
| 73 |
+
opt.task = "simin_gtout"
|
| 74 |
opt.scale = 1
|
| 75 |
opt.nch_in = 9
|
| 76 |
opt.nch_out = 1
|
| 77 |
|
|
|
|
| 78 |
return opt
|
| 79 |
|
| 80 |
|
| 81 |
def GetOptions_allRnd_0215():
|
| 82 |
# training options
|
| 83 |
opt = Namespace()
|
| 84 |
+
opt.model = "rcan"
|
| 85 |
opt.n_resgroups = 3
|
| 86 |
opt.n_resblocks = 10
|
| 87 |
opt.n_feats = 48
|
| 88 |
opt.reduction = 16
|
| 89 |
opt.narch = 0
|
| 90 |
+
opt.norm = "adapthist"
|
| 91 |
|
| 92 |
opt.cpu = False
|
| 93 |
opt.multigpu = False
|
| 94 |
opt.undomulti = False
|
| 95 |
+
opt.device = torch.device(
|
| 96 |
+
"cuda" if torch.cuda.is_available() and not opt.cpu else "cpu"
|
| 97 |
+
)
|
| 98 |
|
| 99 |
opt.imageSize = 512
|
| 100 |
opt.weights = "model/0216_SIMRec_0214_rndAll_rcan_continued.pth"
|
| 101 |
opt.root = "model/0080.jpg"
|
| 102 |
opt.out = "model/myout"
|
| 103 |
|
| 104 |
+
opt.task = "simin_gtout"
|
| 105 |
opt.scale = 1
|
| 106 |
opt.nch_in = 9
|
| 107 |
opt.nch_out = 1
|
| 108 |
|
|
|
|
| 109 |
return opt
|
| 110 |
|
| 111 |
|
|
|
|
| 112 |
def GetOptions_allRnd_0317():
|
| 113 |
# training options
|
| 114 |
opt = Namespace()
|
| 115 |
+
opt.model = "rcan"
|
| 116 |
opt.n_resgroups = 3
|
| 117 |
opt.n_resblocks = 10
|
| 118 |
opt.n_feats = 96
|
| 119 |
opt.reduction = 16
|
| 120 |
opt.narch = 0
|
| 121 |
+
opt.norm = "minmax"
|
| 122 |
|
| 123 |
opt.cpu = False
|
| 124 |
opt.multigpu = False
|
| 125 |
opt.undomulti = False
|
| 126 |
+
opt.device = torch.device(
|
| 127 |
+
"cuda" if torch.cuda.is_available() and not opt.cpu else "cpu"
|
| 128 |
+
)
|
| 129 |
|
| 130 |
opt.imageSize = 512
|
| 131 |
opt.weights = "model/DIV2K_randomised_3x3_20200317.pth"
|
| 132 |
opt.root = "model/0080.jpg"
|
| 133 |
opt.out = "model/myout"
|
| 134 |
|
| 135 |
+
opt.task = "simin_gtout"
|
| 136 |
opt.scale = 1
|
| 137 |
opt.nch_in = 9
|
| 138 |
opt.nch_out = 1
|
| 139 |
|
|
|
|
| 140 |
return opt
|
| 141 |
|
| 142 |
|
|
|
|
| 143 |
def LoadModel(opt):
|
| 144 |
+
print("Loading model")
|
| 145 |
print(opt)
|
| 146 |
|
| 147 |
net = GetModel(opt)
|
| 148 |
+
print("loading checkpoint", opt.weights)
|
| 149 |
+
checkpoint = torch.load(opt.weights, map_location=opt.device)
|
| 150 |
|
| 151 |
if type(checkpoint) is dict:
|
| 152 |
+
state_dict = checkpoint["state_dict"]
|
| 153 |
else:
|
| 154 |
state_dict = checkpoint
|
| 155 |
|
|
|
|
| 160 |
return net
|
| 161 |
|
| 162 |
|
| 163 |
+
def prepimg(stack, self):
|
|
|
|
| 164 |
inputimg = stack[:9]
|
| 165 |
|
| 166 |
if self.nch_in == 6:
|
| 167 |
+
inputimg = inputimg[[0, 1, 3, 4, 6, 7]]
|
| 168 |
elif self.nch_in == 3:
|
| 169 |
+
inputimg = inputimg[[0, 4, 8]]
|
| 170 |
|
| 171 |
if inputimg.shape[1] > 512 or inputimg.shape[2] > 512:
|
| 172 |
+
print("Over 512x512! Cropping")
|
| 173 |
+
inputimg = inputimg[:, :512, :512]
|
| 174 |
|
| 175 |
+
if (
|
| 176 |
+
self.norm == "convert"
|
| 177 |
+
): # raw img from microscope, needs normalisation and correct frame ordering
|
| 178 |
+
print("Raw input assumed - converting")
|
| 179 |
# NCHW
|
| 180 |
# I = np.zeros((9,opt.imageSize,opt.imageSize),dtype='uint16')
|
| 181 |
|
|
|
|
| 186 |
# I[t,:,:] = frame
|
| 187 |
# inputimg = I
|
| 188 |
|
| 189 |
+
inputimg = np.rot90(inputimg, axes=(1, 2))
|
| 190 |
+
inputimg = inputimg[
|
| 191 |
+
[6, 7, 8, 3, 4, 5, 0, 1, 2]
|
| 192 |
+
] # could also do [8,7,6,5,4,3,2,1,0]
|
| 193 |
for i in range(len(inputimg)):
|
| 194 |
inputimg[i] = 100 / np.max(inputimg[i]) * inputimg[i]
|
| 195 |
+
elif "convert" in self.norm:
|
| 196 |
fac = float(self.norm[7:])
|
| 197 |
+
inputimg = np.rot90(inputimg, axes=(1, 2))
|
| 198 |
+
inputimg = inputimg[
|
| 199 |
+
[6, 7, 8, 3, 4, 5, 0, 1, 2]
|
| 200 |
+
] # could also do [8,7,6,5,4,3,2,1,0]
|
| 201 |
for i in range(len(inputimg)):
|
| 202 |
inputimg[i] = fac * 255 / np.max(inputimg[i]) * inputimg[i]
|
| 203 |
|
| 204 |
+
inputimg = inputimg.astype("float") / np.max(inputimg) # used to be /255
|
| 205 |
+
widefield = np.mean(inputimg, 0)
|
| 206 |
|
| 207 |
+
if self.norm == "adapthist":
|
|
|
|
|
|
|
|
|
|
| 208 |
for i in range(len(inputimg)):
|
| 209 |
+
inputimg[i] = exposure.equalize_adapthist(inputimg[i], clip_limit=0.001)
|
| 210 |
+
widefield = exposure.equalize_adapthist(widefield, clip_limit=0.001)
|
| 211 |
else:
|
| 212 |
# normalise
|
| 213 |
inputimg = torch.tensor(inputimg).float()
|
| 214 |
widefield = torch.tensor(widefield).float()
|
| 215 |
+
widefield = (widefield - torch.min(widefield)) / (
|
| 216 |
+
torch.max(widefield) - torch.min(widefield)
|
| 217 |
+
)
|
| 218 |
|
| 219 |
+
if self.norm == "minmax":
|
| 220 |
for i in range(len(inputimg)):
|
| 221 |
+
inputimg[i] = (inputimg[i] - torch.min(inputimg[i])) / (
|
| 222 |
+
torch.max(inputimg[i]) - torch.min(inputimg[i])
|
| 223 |
+
)
|
| 224 |
+
elif "minmax" in self.norm:
|
| 225 |
fac = float(self.norm[6:])
|
| 226 |
for i in range(len(inputimg)):
|
| 227 |
+
inputimg[i] = (
|
| 228 |
+
fac
|
| 229 |
+
* (inputimg[i] - torch.min(inputimg[i]))
|
| 230 |
+
/ (torch.max(inputimg[i]) - torch.min(inputimg[i]))
|
| 231 |
+
)
|
| 232 |
|
| 233 |
# otf = torch.tensor(otf.astype('float') / np.max(otf)).unsqueeze(0).float()
|
| 234 |
# gt = torch.tensor(gt.astype('float') / 255).unsqueeze(0).float()
|
| 235 |
# simimg = torch.tensor(simimg.astype('float') / 255).unsqueeze(0).float()
|
| 236 |
# widefield = torch.mean(inputimg,0).unsqueeze(0)
|
| 237 |
|
|
|
|
| 238 |
# normalise
|
| 239 |
# gt = (gt - torch.min(gt)) / (torch.max(gt) - torch.min(gt))
|
| 240 |
# simimg = (simimg - torch.min(simimg)) / (torch.max(simimg) - torch.min(simimg))
|
| 241 |
# widefield = (widefield - torch.min(widefield)) / (torch.max(widefield) - torch.min(widefield))
|
| 242 |
inputimg = torch.tensor(inputimg).float()
|
| 243 |
widefield = torch.tensor(widefield).float()
|
| 244 |
+
return inputimg, widefield
|
| 245 |
+
|
| 246 |
|
| 247 |
+
def save_image(data, filename, cmap):
|
| 248 |
sizes = np.shape(data)
|
| 249 |
fig = plt.figure()
|
| 250 |
+
fig.set_size_inches(1.0 * sizes[0] / sizes[1], 1, forward=False)
|
| 251 |
+
ax = plt.Axes(fig, [0.0, 0.0, 1.0, 1.0])
|
| 252 |
ax.set_axis_off()
|
| 253 |
fig.add_axes(ax)
|
| 254 |
ax.imshow(data, cmap=cmap)
|
| 255 |
+
plt.savefig(filename, dpi=sizes[0])
|
| 256 |
plt.close()
|
| 257 |
|
| 258 |
|
| 259 |
+
def EvaluateModel(net, opt, stack):
|
| 260 |
+
outfile = datetime.datetime.utcnow().strftime("%H-%M-%S")
|
| 261 |
+
outfile = "ML-SIM_%s" % outfile
|
|
|
|
| 262 |
|
| 263 |
os.makedirs(opt.out, exist_ok=True)
|
| 264 |
|
| 265 |
print(stack.shape)
|
| 266 |
inputimg, widefield = prepimg(stack, opt)
|
| 267 |
|
| 268 |
+
if opt.norm == "convert" or "minmax" in opt.norm or "adapthist" in opt.norm:
|
| 269 |
+
cmap = "viridis"
|
| 270 |
else:
|
| 271 |
+
cmap = "gray"
|
| 272 |
|
| 273 |
# skimage.io.imsave('%s_wf.png' % outfile,(255*widefield.numpy()).astype('uint8'))
|
| 274 |
+
wf = (255 * widefield.numpy()).astype("uint8")
|
| 275 |
+
wf_upscaled = skimage.transform.rescale(
|
| 276 |
+
wf, 1.5, order=3
|
| 277 |
+
) # should ideally be done by drawing on client side, in javascript
|
| 278 |
+
save_image(wf_upscaled, "%s_wf.png" % outfile, cmap)
|
| 279 |
|
| 280 |
# skimage.io.imsave('%s.tif' % outfile, inputimg.numpy())
|
| 281 |
|
|
|
|
| 284 |
with torch.no_grad():
|
| 285 |
sr = net(inputimg.to(opt.device))
|
| 286 |
sr = sr.cpu()
|
| 287 |
+
sr = torch.clamp(sr, min=0, max=1)
|
| 288 |
+
print("min max", inputimg.min(), inputimg.max())
|
| 289 |
|
| 290 |
pil_sr_img = toPIL(sr[0])
|
| 291 |
|
| 292 |
+
if opt.norm == "convert":
|
| 293 |
+
pil_sr_img = transforms.functional.rotate(pil_sr_img, -90)
|
| 294 |
|
| 295 |
# pil_sr_img.save('%s.png' % outfile) # true output for downloading, no LUT
|
| 296 |
sr_img = np.array(pil_sr_img)
|
| 297 |
# sr_img = exposure.equalize_adapthist(sr_img,clip_limit=0.01)
|
| 298 |
+
skimage.io.imsave("%s.png" % outfile, sr_img) # true out for downloading, no LUT
|
| 299 |
|
| 300 |
+
sr_img = skimage.transform.rescale(
|
| 301 |
+
sr_img, 1.5, order=3
|
| 302 |
+
) # should ideally be done by drawing on client side, in javascript
|
| 303 |
|
| 304 |
+
save_image(sr_img, "%s_sr.png" % outfile, cmap)
|
| 305 |
+
return outfile + "_sr.png", outfile + "_wf.png", outfile + ".png"
|
| 306 |
# return wf, sr_img, outfile
|