Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import re | |
| from transformers import ( | |
| AutoTokenizer, | |
| AutoModelForSeq2SeqLM | |
| ) | |
| def clean_text(text): | |
| text = text.encode("ascii", errors="ignore").decode( | |
| "ascii" | |
| ) # remove non-ascii, Chinese characters | |
| text = re.sub(r"\n", " ", text) | |
| text = re.sub(r"\n\n", " ", text) | |
| text = re.sub(r"\t", " ", text) | |
| text = re.sub(r"ADVERTISEMENT", " ", text) | |
| text = text.strip(" ") | |
| text = re.sub( | |
| " +", " ", text | |
| ).strip() # get rid of multiple spaces and replace with a single | |
| return text | |
| modchoice_1 = "chinhon/bart-large-cnn_summarizer_30216" | |
| def summarizer1(text): | |
| input_text = clean_text(text) | |
| tokenizer_1 = AutoTokenizer.from_pretrained(modchoice_1) | |
| model_1 = AutoModelForSeq2SeqLM.from_pretrained(modchoice_1) | |
| with tokenizer_1.as_target_tokenizer(): | |
| batch = tokenizer_1( | |
| input_text, truncation=True, padding="longest", return_tensors="pt" | |
| ) | |
| raw_1 = model_1.generate(**batch) | |
| summary_1 = tokenizer_1.batch_decode(raw_1, skip_special_tokens=True) | |
| summed_1 = summary_1[0] | |
| lines1 = summed_1.split(". ") | |
| for i in range(len(lines1)): | |
| lines1[i] = "* " + lines1[i] | |
| summ_bullet1 = "\n".join(lines1) | |
| return summ_bullet1 | |
| summary1 = gr.Interface( | |
| fn=summarizer1, inputs=gr.inputs.Textbox(), outputs=gr.outputs.Textbox(label="") | |
| ) | |
| modchoice_2 = ( | |
| "chinhon/pegasus-newsroom-summarizer_30216" | |
| ) | |
| def summarizer2(text): | |
| input_text = clean_text(text) | |
| tokenizer_2 = AutoTokenizer.from_pretrained(modchoice_2) | |
| model_2 = AutoModelForSeq2SeqLM.from_pretrained(modchoice_2) | |
| with tokenizer_2.as_target_tokenizer(): | |
| batch = tokenizer_2( | |
| input_text, truncation=True, padding="longest", return_tensors="pt" | |
| ) | |
| raw_2 = model_2.generate(**batch) | |
| summary_2 = tokenizer_2.batch_decode(raw_2, skip_special_tokens=True) | |
| summed_2 = summary_2[0] | |
| lines2 = summed_2.split(". ") | |
| for i in range(len(lines2)): | |
| lines2[i] = "* " + lines2[i] | |
| summ_bullet2 = "\n".join(lines2) | |
| return summ_bullet2 | |
| summary2 = gr.Interface( | |
| fn=summarizer2, inputs=gr.inputs.Textbox(), outputs=gr.outputs.Textbox(label="") | |
| ) | |
| gradio_ui = gr.Parallel( | |
| summary1, | |
| summary2, | |
| title="Compare 2 AI Summarizers", | |
| inputs=gr.inputs.Textbox( | |
| lines=20, | |
| label="Paste your news story here, and choose from 2 suggested summaries", | |
| ), | |
| theme="huggingface", | |
| ) | |
| gradio_ui.launch(enable_queue=True) | |