Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import re
|
| 3 |
+
|
| 4 |
+
from transformers import (
|
| 5 |
+
AutoTokenizer,
|
| 6 |
+
AutoModelForSeq2SeqLM
|
| 7 |
+
)
|
| 8 |
+
|
| 9 |
+
def clean_text(text):
|
| 10 |
+
text = text.encode("ascii", errors="ignore").decode(
|
| 11 |
+
"ascii"
|
| 12 |
+
) # remove non-ascii, Chinese characters
|
| 13 |
+
text = re.sub(r"\n", " ", text)
|
| 14 |
+
text = re.sub(r"\n\n", " ", text)
|
| 15 |
+
text = re.sub(r"\t", " ", text)
|
| 16 |
+
text = text.strip(" ")
|
| 17 |
+
text = re.sub(
|
| 18 |
+
" +", " ", text
|
| 19 |
+
).strip() # get rid of multiple spaces and replace with a single
|
| 20 |
+
return text
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
modchoice_1 = "chinhon/bart-large-cnn-summarizer_03"
|
| 24 |
+
|
| 25 |
+
def summarizer1(text):
|
| 26 |
+
input_text = clean_text(text)
|
| 27 |
+
|
| 28 |
+
tokenizer_1 = AutoTokenizer.from_pretrained(modchoice_1)
|
| 29 |
+
|
| 30 |
+
model_1 = AutoModelForSeq2SeqLM.from_pretrained(modchoice_1)
|
| 31 |
+
|
| 32 |
+
with tokenizer_1.as_target_tokenizer():
|
| 33 |
+
batch = tokenizer_1(
|
| 34 |
+
input_text, truncation=True, padding="longest", return_tensors="pt"
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
raw_1 = model_1.generate(**batch)
|
| 38 |
+
|
| 39 |
+
summary_1 = tokenizer_1.batch_decode(raw_1, skip_special_tokens=True)
|
| 40 |
+
|
| 41 |
+
summed_1 = summary_1[0]
|
| 42 |
+
|
| 43 |
+
lines1 = summed_1.split(". ")
|
| 44 |
+
|
| 45 |
+
for i in range(len(lines1)):
|
| 46 |
+
lines1[i] = "* " + lines1[i]
|
| 47 |
+
|
| 48 |
+
summ_bullet1 = "\n".join(lines1)
|
| 49 |
+
|
| 50 |
+
return summ_bullet1
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
summary1 = gr.Interface(
|
| 54 |
+
fn=summarizer1, inputs=gr.inputs.Textbox(), outputs=gr.outputs.Textbox(label="")
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
modchoice_2 = (
|
| 59 |
+
"chinhon/pegasus-newsroom-summarizer_02"
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
def summarizer2(text):
|
| 63 |
+
input_text = clean_text(text)
|
| 64 |
+
|
| 65 |
+
tokenizer_2 = AutoTokenizer.from_pretrained(modchoice_2)
|
| 66 |
+
|
| 67 |
+
model_2 = AutoModelForSeq2SeqLM.from_pretrained(modchoice_2)
|
| 68 |
+
|
| 69 |
+
with tokenizer_2.as_target_tokenizer():
|
| 70 |
+
batch = tokenizer_2(
|
| 71 |
+
input_text, truncation=True, padding="longest", return_tensors="pt"
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
raw_2 = model_2.generate(**batch)
|
| 75 |
+
|
| 76 |
+
summary_2 = tokenizer_2.batch_decode(raw_2, skip_special_tokens=True)
|
| 77 |
+
|
| 78 |
+
summed_2 = summary_2[0]
|
| 79 |
+
|
| 80 |
+
lines2 = summed_2.split(". ")
|
| 81 |
+
|
| 82 |
+
for i in range(len(lines2)):
|
| 83 |
+
lines2[i] = "* " + lines2[i]
|
| 84 |
+
|
| 85 |
+
summ_bullet2 = "\n".join(lines2)
|
| 86 |
+
|
| 87 |
+
return summ_bullet2
|
| 88 |
+
|
| 89 |
+
summary2 = gr.Interface(
|
| 90 |
+
fn=summarizer2, inputs=gr.inputs.Textbox(), outputs=gr.outputs.Textbox(label="")
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
gradio_ui = gr.Parallel(
|
| 95 |
+
summary1,
|
| 96 |
+
summary2,
|
| 97 |
+
title="Compare 2 AI Summarizers",
|
| 98 |
+
inputs=gr.inputs.Textbox(
|
| 99 |
+
lines=20,
|
| 100 |
+
label="Paste your news story here, and choose from 2 suggested summaries",
|
| 101 |
+
),
|
| 102 |
+
theme="huggingface",
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
gradio_ui.launch(enable_queue=True)
|