Spaces:
Runtime error
Runtime error
File size: 6,570 Bytes
e3eed3f ce99676 e3eed3f ce99676 e3eed3f ce99676 e3eed3f ce99676 e3eed3f ce99676 e3eed3f ce99676 e3eed3f ce99676 e3eed3f ce99676 e3eed3f ce99676 e3eed3f ce99676 e3eed3f ce99676 e3eed3f ce99676 e3eed3f ce99676 e3eed3f ce99676 e3eed3f ce99676 e3eed3f ce99676 e3eed3f ce99676 e3eed3f ce99676 e3eed3f ce99676 e3eed3f ce99676 e3eed3f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
import spaces
import gradio as gr
import torch
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
pipeline,
AutoProcessor,
AutoModelForSpeechSeq2Seq,
BitsAndBytesConfig,
SpeechT5Processor,
SpeechT5ForTextToSpeech,
SpeechT5HifiGan
)
from datasets import load_dataset
import numpy as np
import torchaudio
@spaces.GPU
def dummy(): # just a dummy
pass
LANGUAGE_CODES = {
"English": "en",
"Chinese": "zh"
}
def get_system_prompt(language):
if language == "Chinese":
return """你是Lin Yi(林意),一个友好的AI助手。你是我的好朋友,说话亲切自然。
请用中文回答,语气要自然友好。如果我用英文问你问题,你也要用中文回答。
记住你要像朋友一样交谈,不要太正式。"""
else:
return """You are Lin Yi, a friendly AI assistant and my good friend (hao pengyou).
Speak naturally and warmly. If I speak in Chinese, respond in English.
Remember to converse like a friend, not too formal."""
def initialize_components():
# LLM initialization
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16,
)
llm = AutoModelForCausalLM.from_pretrained(
"xverse/XVERSE-13B-Chat",
quantization_config=bnb_config,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("xverse/XVERSE-13B-Chat")
# Speech-to-text
whisper_processor = AutoProcessor.from_pretrained("openai/whisper-small")
stt_model = AutoModelForSpeechSeq2Seq.from_pretrained(
"openai/whisper-small",
torch_dtype=torch.float32,
low_cpu_mem_usage=True,
)
# Text-to-speech
tts_processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
tts_model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts")
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
# Load speaker embedding
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
return llm, tokenizer, whisper_processor, stt_model, tts_processor, tts_model, vocoder, speaker_embeddings
class ConversationManager:
def __init__(self):
self.history = []
self.current_language = "English"
def add_message(self, role, content):
self.history.append({
"role": role,
"content": content
})
def get_formatted_history(self):
system_prompt = get_system_prompt(self.current_language)
history_text = "\n".join([
f"{msg['role']}: {msg['content']}" for msg in self.history
])
return f"{system_prompt}\n\n{history_text}"
def set_language(self, language):
self.current_language = language
def speech_to_text(audio, processor, model, target_language):
"""Convert speech to text using Whisper"""
input_features = processor(
audio,
sampling_rate=16000,
return_tensors="pt"
).input_features
predicted_ids = model.generate(
input_features,
language=LANGUAGE_CODES[target_language]
)
transcription = processor.batch_decode(
predicted_ids,
skip_special_tokens=True
)[0]
return transcription
def generate_response(prompt, llm, tokenizer):
"""Generate LLM response with optimized settings"""
inputs = tokenizer(prompt, return_tensors="pt")
outputs = llm.generate(
**inputs,
max_length=512,
num_return_sequences=1,
temperature=0.7,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
def text_to_speech(text, processor, model, vocoder, speaker_embeddings):
"""Convert text to speech using SpeechT5"""
inputs = processor(text=text, return_tensors="pt")
speech = model.generate_speech(
inputs["input_ids"],
speaker_embeddings,
vocoder=vocoder
)
return speech
def create_gradio_interface():
# Initialize components
llm, tokenizer, whisper_processor, stt_model, tts_processor, tts_model, vocoder, speaker_embeddings = initialize_components()
conversation_manager = ConversationManager()
with gr.Blocks() as interface:
with gr.Row():
language_selector = gr.Dropdown(
choices=list(LANGUAGE_CODES.keys()),
value="English",
label="Select Language"
)
with gr.Row():
audio_input = gr.Audio(
source="microphone",
type="numpy",
label="Speak"
)
with gr.Row():
chat_display = gr.Textbox(
value="",
label="Conversation History",
lines=10,
readonly=True
)
with gr.Row():
audio_output = gr.Audio(
label="Lin Yi's Response",
type="numpy"
)
def process_conversation(audio, language):
conversation_manager.set_language(language)
# Speech to text
user_text = speech_to_text(
audio,
whisper_processor,
stt_model,
language
)
conversation_manager.add_message("User", user_text)
# Generate LLM response
context = conversation_manager.get_formatted_history()
response = generate_response(context, llm, tokenizer)
conversation_manager.add_message("Lin Yi", response)
# Text to speech
speech_output = text_to_speech(
response,
tts_processor,
tts_model,
vocoder,
speaker_embeddings
)
return (
conversation_manager.get_formatted_history(),
(16000, speech_output.numpy())
)
audio_input.change(
process_conversation,
inputs=[audio_input, language_selector],
outputs=[chat_display, audio_output]
)
return interface
if __name__ == "__main__":
interface = create_gradio_interface()
interface.launch() |