Spaces:
Running
Running
Update main.py
Browse files
main.py
CHANGED
|
@@ -5,54 +5,53 @@ import streamlit as st
|
|
| 5 |
import anthropic
|
| 6 |
from requests import JSONDecodeError
|
| 7 |
|
| 8 |
-
|
|
|
|
| 9 |
from langchain_community.vectorstores import SupabaseVectorStore
|
| 10 |
-
from
|
| 11 |
-
from
|
| 12 |
|
| 13 |
-
|
| 14 |
from langchain.memory import ConversationBufferMemory
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
from supabase import Client, create_client
|
| 17 |
from streamlit.logger import get_logger
|
| 18 |
from stats import get_usage, add_usage
|
| 19 |
|
| 20 |
# βββββββ supabase + secrets ββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 21 |
-
supabase_url
|
| 22 |
-
supabase_key
|
| 23 |
-
openai_api_key
|
| 24 |
anthropic_api_key = st.secrets.anthropic_api_key
|
| 25 |
-
hf_api_key
|
| 26 |
-
username
|
| 27 |
|
| 28 |
supabase: Client = create_client(supabase_url, supabase_key)
|
| 29 |
logger = get_logger(__name__)
|
| 30 |
|
| 31 |
-
# βββββββ embeddings
|
| 32 |
-
|
| 33 |
-
embeddings = HuggingFaceBgeEmbeddings(
|
| 34 |
model_name="BAAI/bge-large-en-v1.5",
|
| 35 |
model_kwargs={"device": "cpu"},
|
| 36 |
encode_kwargs={"normalize_embeddings": True}
|
| 37 |
)
|
| 38 |
-
|
|
|
|
| 39 |
vector_store = SupabaseVectorStore(
|
| 40 |
client=supabase,
|
| 41 |
embedding=embeddings,
|
| 42 |
query_name="match_documents",
|
| 43 |
table_name="documents",
|
| 44 |
)
|
| 45 |
-
memory = ConversationBufferMemory(
|
| 46 |
-
memory_key="chat_history",
|
| 47 |
-
input_key="question",
|
| 48 |
-
output_key="answer",
|
| 49 |
-
return_messages=True,
|
| 50 |
-
)
|
| 51 |
|
| 52 |
# βββββββ LLM setup ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 53 |
-
model
|
| 54 |
-
temperature
|
| 55 |
-
max_tokens
|
| 56 |
|
| 57 |
import re
|
| 58 |
|
|
@@ -66,10 +65,10 @@ def clean_response(answer: str) -> str:
|
|
| 66 |
answer = re.sub(r'<thinking>.*?</thinking>', '', answer, flags=re.DOTALL)
|
| 67 |
|
| 68 |
# Remove other common AI response artifacts
|
| 69 |
-
answer = re.sub(r'\[.*?\]', '', answer, flags=re.DOTALL)
|
| 70 |
-
answer = re.sub(r'\{.*?\}', '', answer, flags=re.DOTALL)
|
| 71 |
-
answer = re.sub(r'```.*?```', '', answer, flags=re.DOTALL)
|
| 72 |
-
answer = re.sub(r'---.*?---', '', answer, flags=re.DOTALL)
|
| 73 |
|
| 74 |
# Remove excessive whitespace and newlines
|
| 75 |
answer = re.sub(r'\s+', ' ', answer).strip()
|
|
@@ -79,65 +78,93 @@ def clean_response(answer: str) -> str:
|
|
| 79 |
answer = re.sub(r'\s*(Sincerely,.*|Best regards,.*|Regards,.*)$', '', answer, flags=re.IGNORECASE)
|
| 80 |
|
| 81 |
return answer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
"""Ask the RAG chain to answer `query`, with JSONβerror fallback."""
|
| 85 |
# log usage
|
| 86 |
add_usage(supabase, "chat", "prompt:" + query, {"model": model, "temperature": temperature})
|
| 87 |
logger.info("Using HF model %s", model)
|
| 88 |
|
| 89 |
-
#
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
#
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
# },
|
| 100 |
-
# )
|
| 101 |
-
|
| 102 |
-
hf = ChatOpenAI(
|
| 103 |
-
base_url=f"https://router.huggingface.co/hf-inference/models/{model}/v1",
|
| 104 |
-
api_key=hf_api_key,
|
| 105 |
-
model=model,
|
| 106 |
-
temperature=temperature,
|
| 107 |
-
max_tokens=max_tokens,
|
| 108 |
-
timeout=30, # Add timeout
|
| 109 |
-
max_retries=3, # Built-in retry logic
|
| 110 |
-
)
|
| 111 |
-
|
| 112 |
-
# conversational RAG chain
|
| 113 |
-
qa = ConversationalRetrievalChain.from_llm(
|
| 114 |
-
llm=hf,
|
| 115 |
-
retriever=vector_store.as_retriever(
|
| 116 |
-
search_kwargs={"score_threshold": 0.6, "k": 4, "filter": {"user": username}}
|
| 117 |
-
),
|
| 118 |
-
memory=memory,
|
| 119 |
-
verbose=True,
|
| 120 |
-
return_source_documents=True,
|
| 121 |
-
)
|
| 122 |
|
| 123 |
try:
|
| 124 |
-
result =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
except JSONDecodeError as e:
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
sources = result.get("source_documents", [])
|
| 132 |
-
|
| 133 |
-
if not sources:
|
| 134 |
-
return (
|
| 135 |
-
"Iβm sorry, I donβt have enough information to answer that. "
|
| 136 |
-
"If you have a public data source to add, please email [email protected]."
|
| 137 |
-
)
|
| 138 |
-
|
| 139 |
-
answer = clean_response(answer)
|
| 140 |
-
return answer
|
| 141 |
|
| 142 |
# βββββββ Streamlit UI ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 143 |
st.set_page_config(
|
|
@@ -161,23 +188,30 @@ st.markdown(
|
|
| 161 |
"|[paper](https://securade.ai/assets/pdfs/Securade.ai-Safety-Copilot-Whitepaper.pdf)]"
|
| 162 |
)
|
| 163 |
|
|
|
|
| 164 |
if "chat_history" not in st.session_state:
|
| 165 |
st.session_state.chat_history = []
|
| 166 |
|
| 167 |
-
#
|
| 168 |
for msg in st.session_state.chat_history:
|
| 169 |
with st.chat_message(msg["role"]):
|
| 170 |
st.markdown(msg["content"])
|
| 171 |
|
| 172 |
-
# new user input
|
| 173 |
if prompt := st.chat_input("Ask a question"):
|
|
|
|
| 174 |
st.session_state.chat_history.append({"role": "user", "content": prompt})
|
|
|
|
|
|
|
| 175 |
with st.chat_message("user"):
|
| 176 |
st.markdown(prompt)
|
| 177 |
|
|
|
|
| 178 |
with st.spinner("Safety briefing in progress..."):
|
| 179 |
-
answer = response_generator(prompt)
|
| 180 |
|
| 181 |
with st.chat_message("assistant"):
|
| 182 |
st.markdown(answer)
|
| 183 |
-
|
|
|
|
|
|
|
|
|
| 5 |
import anthropic
|
| 6 |
from requests import JSONDecodeError
|
| 7 |
|
| 8 |
+
# Updated imports for latest LangChain
|
| 9 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
| 10 |
from langchain_community.vectorstores import SupabaseVectorStore
|
| 11 |
+
from langchain_openai import ChatOpenAI
|
| 12 |
+
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
|
| 13 |
|
| 14 |
+
# Updated memory and chain imports
|
| 15 |
from langchain.memory import ConversationBufferMemory
|
| 16 |
+
from langchain.chains import create_retrieval_chain
|
| 17 |
+
from langchain.chains.combine_documents import create_stuff_documents_chain
|
| 18 |
+
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
| 19 |
+
from langchain_core.messages import HumanMessage, AIMessage
|
| 20 |
|
| 21 |
from supabase import Client, create_client
|
| 22 |
from streamlit.logger import get_logger
|
| 23 |
from stats import get_usage, add_usage
|
| 24 |
|
| 25 |
# βββββββ supabase + secrets ββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 26 |
+
supabase_url = st.secrets.SUPABASE_URL
|
| 27 |
+
supabase_key = st.secrets.SUPABASE_KEY
|
| 28 |
+
openai_api_key = st.secrets.openai_api_key
|
| 29 |
anthropic_api_key = st.secrets.anthropic_api_key
|
| 30 |
+
hf_api_key = st.secrets.hf_api_key
|
| 31 |
+
username = st.secrets.username
|
| 32 |
|
| 33 |
supabase: Client = create_client(supabase_url, supabase_key)
|
| 34 |
logger = get_logger(__name__)
|
| 35 |
|
| 36 |
+
# βββββββ embeddings (Updated to use langchain-huggingface) βββββββββββββββββββββ
|
| 37 |
+
embeddings = HuggingFaceEmbeddings(
|
|
|
|
| 38 |
model_name="BAAI/bge-large-en-v1.5",
|
| 39 |
model_kwargs={"device": "cpu"},
|
| 40 |
encode_kwargs={"normalize_embeddings": True}
|
| 41 |
)
|
| 42 |
+
|
| 43 |
+
# βββββββ vector store ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 44 |
vector_store = SupabaseVectorStore(
|
| 45 |
client=supabase,
|
| 46 |
embedding=embeddings,
|
| 47 |
query_name="match_documents",
|
| 48 |
table_name="documents",
|
| 49 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
# βββββββ LLM setup ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 52 |
+
model = "HuggingFaceTB/SmolLM3-3B"
|
| 53 |
+
temperature = 0.1
|
| 54 |
+
max_tokens = 500
|
| 55 |
|
| 56 |
import re
|
| 57 |
|
|
|
|
| 65 |
answer = re.sub(r'<thinking>.*?</thinking>', '', answer, flags=re.DOTALL)
|
| 66 |
|
| 67 |
# Remove other common AI response artifacts
|
| 68 |
+
answer = re.sub(r'\[.*?\]', '', answer, flags=re.DOTALL)
|
| 69 |
+
answer = re.sub(r'\{.*?\}', '', answer, flags=re.DOTALL)
|
| 70 |
+
answer = re.sub(r'```.*?```', '', answer, flags=re.DOTALL)
|
| 71 |
+
answer = re.sub(r'---.*?---', '', answer, flags=re.DOTALL)
|
| 72 |
|
| 73 |
# Remove excessive whitespace and newlines
|
| 74 |
answer = re.sub(r'\s+', ' ', answer).strip()
|
|
|
|
| 78 |
answer = re.sub(r'\s*(Sincerely,.*|Best regards,.*|Regards,.*)$', '', answer, flags=re.IGNORECASE)
|
| 79 |
|
| 80 |
return answer
|
| 81 |
+
|
| 82 |
+
def create_conversational_rag_chain():
|
| 83 |
+
"""Create a modern conversational RAG chain using LCEL."""
|
| 84 |
+
|
| 85 |
+
# Create the HuggingFace LLM
|
| 86 |
+
llm = ChatOpenAI(
|
| 87 |
+
base_url=f"https://router.huggingface.co/hf-inference/models/{model}/v1",
|
| 88 |
+
api_key=hf_api_key,
|
| 89 |
+
model=model,
|
| 90 |
+
temperature=temperature,
|
| 91 |
+
max_tokens=max_tokens,
|
| 92 |
+
timeout=30,
|
| 93 |
+
max_retries=3,
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
# Create retriever
|
| 97 |
+
retriever = vector_store.as_retriever(
|
| 98 |
+
search_kwargs={"score_threshold": 0.6, "k": 4, "filter": {"user": username}}
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
# Create system prompt for RAG
|
| 102 |
+
system_prompt = """You are a helpful safety assistant. Use the following pieces of retrieved context to answer the question.
|
| 103 |
+
If you don't know the answer based on the context, just say that you don't have enough information to answer that question.
|
| 104 |
+
|
| 105 |
+
Context: {context}
|
| 106 |
+
|
| 107 |
+
Chat History: {chat_history}
|
| 108 |
+
|
| 109 |
+
Question: {input}
|
| 110 |
+
|
| 111 |
+
Answer:"""
|
| 112 |
+
|
| 113 |
+
prompt = ChatPromptTemplate.from_messages([
|
| 114 |
+
("system", system_prompt),
|
| 115 |
+
MessagesPlaceholder("chat_history"),
|
| 116 |
+
("human", "{input}"),
|
| 117 |
+
])
|
| 118 |
|
| 119 |
+
# Create document processing chain
|
| 120 |
+
question_answer_chain = create_stuff_documents_chain(llm, prompt)
|
| 121 |
+
|
| 122 |
+
# Create retrieval chain
|
| 123 |
+
rag_chain = create_retrieval_chain(retriever, question_answer_chain)
|
| 124 |
+
|
| 125 |
+
return rag_chain
|
| 126 |
+
|
| 127 |
+
def response_generator(query: str, chat_history: list) -> str:
|
| 128 |
"""Ask the RAG chain to answer `query`, with JSONβerror fallback."""
|
| 129 |
# log usage
|
| 130 |
add_usage(supabase, "chat", "prompt:" + query, {"model": model, "temperature": temperature})
|
| 131 |
logger.info("Using HF model %s", model)
|
| 132 |
|
| 133 |
+
# Create the RAG chain
|
| 134 |
+
rag_chain = create_conversational_rag_chain()
|
| 135 |
+
|
| 136 |
+
# Format chat history for the chain
|
| 137 |
+
formatted_history = []
|
| 138 |
+
for msg in chat_history:
|
| 139 |
+
if msg["role"] == "user":
|
| 140 |
+
formatted_history.append(HumanMessage(content=msg["content"]))
|
| 141 |
+
elif msg["role"] == "assistant":
|
| 142 |
+
formatted_history.append(AIMessage(content=msg["content"]))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
|
| 144 |
try:
|
| 145 |
+
result = rag_chain.invoke({
|
| 146 |
+
"input": query,
|
| 147 |
+
"chat_history": formatted_history
|
| 148 |
+
})
|
| 149 |
+
|
| 150 |
+
answer = result.get("answer", "")
|
| 151 |
+
context = result.get("context", [])
|
| 152 |
+
|
| 153 |
+
if not context:
|
| 154 |
+
return (
|
| 155 |
+
"I'm sorry, I don't have enough information to answer that. "
|
| 156 |
+
"If you have a public data source to add, please email [email protected]."
|
| 157 |
+
)
|
| 158 |
+
|
| 159 |
+
answer = clean_response(answer)
|
| 160 |
+
return answer
|
| 161 |
+
|
| 162 |
except JSONDecodeError as e:
|
| 163 |
+
logger.error("JSONDecodeError: %s", e)
|
| 164 |
+
return "Sorry, I had trouble processing your request. Please try again."
|
| 165 |
+
except Exception as e:
|
| 166 |
+
logger.error("Unexpected error: %s", e)
|
| 167 |
+
return "Sorry, I encountered an error while processing your request. Please try again."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
|
| 169 |
# βββββββ Streamlit UI ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 170 |
st.set_page_config(
|
|
|
|
| 188 |
"|[paper](https://securade.ai/assets/pdfs/Securade.ai-Safety-Copilot-Whitepaper.pdf)]"
|
| 189 |
)
|
| 190 |
|
| 191 |
+
# Initialize chat history
|
| 192 |
if "chat_history" not in st.session_state:
|
| 193 |
st.session_state.chat_history = []
|
| 194 |
|
| 195 |
+
# Display chat history
|
| 196 |
for msg in st.session_state.chat_history:
|
| 197 |
with st.chat_message(msg["role"]):
|
| 198 |
st.markdown(msg["content"])
|
| 199 |
|
| 200 |
+
# Handle new user input
|
| 201 |
if prompt := st.chat_input("Ask a question"):
|
| 202 |
+
# Add user message to history
|
| 203 |
st.session_state.chat_history.append({"role": "user", "content": prompt})
|
| 204 |
+
|
| 205 |
+
# Display user message
|
| 206 |
with st.chat_message("user"):
|
| 207 |
st.markdown(prompt)
|
| 208 |
|
| 209 |
+
# Generate and display response
|
| 210 |
with st.spinner("Safety briefing in progress..."):
|
| 211 |
+
answer = response_generator(prompt, st.session_state.chat_history[:-1]) # Exclude current message
|
| 212 |
|
| 213 |
with st.chat_message("assistant"):
|
| 214 |
st.markdown(answer)
|
| 215 |
+
|
| 216 |
+
# Add assistant response to history
|
| 217 |
+
st.session_state.chat_history.append({"role": "assistant", "content": answer})
|