Spaces:
Running
Running
File size: 23,694 Bytes
63d785d 3015d12 2e23282 63d785d 2e23282 63d785d fefc16c 2e23282 63d785d fefc16c 2e23282 63d785d 2e23282 63d785d 2e23282 63d785d 2e23282 63d785d 2e23282 63d785d 2e23282 63d785d 2e23282 63d785d 2e23282 63d785d 2e23282 63d785d 2e23282 63d785d 2e23282 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 |
import gradio as gr
import sqlite3
import pandas as pd
from huggingface_hub import hf_hub_download
import os
import time
import json
from typing import Dict, List, Optional
from collections import defaultdict
# ===== CONFIGURATION =====
# 1. Point to the NEW normalized database (fixed)
TARGET_LANGUAGES = ['en', 'fr', 'it', 'de', 'es', 'ar', 'fa', 'grc', 'he', 'la', 'hbo']
NORMALIZED_REPO_ID = "cstr/conceptnet-normalized-multi"
NORMALIZED_DB_FILE = "conceptnet_normalized.db"
CONCEPTNET_BASE = "http://conceptnet.io"
# =========================
# --- All relations MUST be full URLs ---
# This dictionary is now our primary way to map names to relation IDs
CONCEPTNET_RELATIONS: Dict[str, str] = {
"RelatedTo": f"{CONCEPTNET_BASE}/r/RelatedTo",
"IsA": f"{CONCEPTNET_BASE}/r/IsA",
"PartOf": f"{CONCEPTNET_BASE}/r/PartOf",
"HasA": f"{CONCEPTNET_BASE}/r/HasA",
"UsedFor": f"{CONCEPTNET_BASE}/r/UsedFor",
"CapableOf": f"{CONCEPTNET_BASE}/r/CapableOf",
"AtLocation": f"{CONCEPTNET_BASE}/r/AtLocation",
"Causes": f"{CONCEPTNET_BASE}/r/Causes",
"HasSubevent": f"{CONCEPTNET_BASE}/r/HasSubevent",
"HasFirstSubevent": f"{CONCEPTNET_BASE}/r/HasFirstSubevent",
"HasLastSubevent": f"{CONCEPTNET_BASE}/r/HasLastSubevent",
"HasPrerequisite": f"{CONCEPTNET_BASE}/r/HasPrerequisite",
"HasProperty": f"{CONCEPTNET_BASE}/r/HasProperty",
"MotivatedByGoal": f"{CONCEPTNET_BASE}/r/MotivatedByGoal",
"ObstructedBy": f"{CONCEPTNET_BASE}/r/ObstructedBy",
"Desires": f"{CONCEPTNET_BASE}/r/Desires",
"CreatedBy": f"{CONCEPTNET_BASE}/r/CreatedBy",
"Synonym": f"{CONCEPTNET_BASE}/r/Synonym",
"Antonym": f"{CONCEPTNET_BASE}/r/Antonym",
"DistinctFrom": f"{CONCEPTNET_BASE}/r/DistinctFrom",
"DerivedFrom": f"{CONCEPTNET_BASE}/r/DerivedFrom",
"SymbolOf": f"{CONCEPTNET_BASE}/r/SymbolOf",
"DefinedAs": f"{CONCEPTNET_BASE}/r/DefinedAs",
"MannerOf": f"{CONCEPTNET_BASE}/r/MannerOf",
"LocatedNear": f"{CONCEPTNET_BASE}/r/LocatedNear",
"HasContext": f"{CONCEPTNET_BASE}/r/HasContext",
"SimilarTo": f"{CONCEPTNET_BASE}/r/SimilarTo",
"EtymologicallyRelatedTo": f"{CONCEPTNET_BASE}/r/EtymologicallyRelatedTo",
"EtymologicallyDerivedFrom": f"{CONCEPTNET_BASE}/r/EtymologicallyDerivedFrom",
"CausesDesire": f"{CONCEPTNET_BASE}/r/CausesDesire",
"MadeOf": f"{CONCEPTNET_BASE}/r/MadeOf",
"ReceivesAction": f"{CONCEPTNET_BASE}/r/ReceivesAction",
"ExternalURL": f"{CONCEPTNET_BASE}/r/ExternalURL",
"NotDesires": f"{CONCEPTNET_BASE}/r/NotDesires",
"NotUsedFor": f"{CONCEPTNET_BASE}/r/NotUsedFor",
"NotCapableOf": f"{CONCEPTNET_BASE}/r/NotCapableOf",
"NotHasProperty": f"{CONCEPTNET_BASE}/r/NotHasProperty",
}
# =========================
print(f"🌍 Languages: {', '.join([l.upper() for l in TARGET_LANGUAGES])}")
print(f"📚 Relations: {len(CONCEPTNET_RELATIONS)} relations loaded")
def log_progress(message, level="INFO"):
"""Simple logger with timestamp and emoji prefix."""
timestamp = time.strftime("%H:%M:%S")
prefix = {"INFO": "ℹ️ ", "SUCCESS": "✅", "ERROR": "❌", "WARN": "⚠️ ", "DEBUG": "🔍"}.get(level, "")
print(f"[{timestamp}] {prefix} {message}")
def download_normalized_database():
"""Download the NEW normalized database from HF Hub."""
log_progress(f"Downloading/Verifying {NORMALIZED_DB_FILE}...", "INFO")
try:
# This will download or use cache
return hf_hub_download(
repo_id=NORMALIZED_REPO_ID,
filename=NORMALIZED_DB_FILE,
repo_type="dataset"
)
except Exception as e:
log_progress(f"Failed to download DB: {e}", "ERROR")
return None
DB_PATH = download_normalized_database()
if not DB_PATH:
log_progress("DATABASE NOT FOUND. App will not function.", "ERROR")
else:
log_progress(f"Database loaded from: {DB_PATH}", "SUCCESS")
def get_db_connection():
"""Get a thread-safe, read-only connection to the SQLite database."""
if not DB_PATH:
raise Exception("Database path is not set. Cannot create connection.")
# Connect in read-only mode
db_uri = f"file:{DB_PATH}?mode=ro"
conn = sqlite3.connect(db_uri, uri=True, check_same_thread=False)
conn.execute("PRAGMA cache_size = -256000") # 256MB cache
conn.execute("PRAGMA temp_store = MEMORY")
return conn
def node_url_to_label(url: str) -> str:
"""Extract the term from ConceptNet URL: http://conceptnet.io/c/{lang}/{term}/..."""
try:
parts = url.split('/')
# Term is ALWAYS at index 5
if len(parts) >= 6 and parts[3] == 'c':
return parts[5].replace('_', ' ')
except:
pass
return url # Fallback to full URL if parsing fails
def get_semantic_profile(word: str, lang: str = 'en', selected_relations: List[str] = None, progress=gr.Progress()):
"""
--- REWRITTEN FOR NORMALIZED DB ---
Get semantic profile for a word.
This function is now extremely fast, running 4 queries total instead of 2N.
"""
log_progress(f"Profile: {word} ({lang})", "INFO")
if not word or lang not in TARGET_LANGUAGES:
yield "⚠️ Invalid input"
return
if not DB_PATH:
yield "❌ **Error:** Database file not found."
return
# Set default relations if none are selected
if not selected_relations:
selected_relations = [
"IsA", "RelatedTo", "PartOf", "HasA", "UsedFor",
"CapableOf", "Synonym", "Antonym"
]
word = word.strip().lower().replace(' ', '_')
exact_path = f"{CONCEPTNET_BASE}/c/{lang}/{word}"
output_md = f"# 🧠 Semantic Profile: '{word}' ({lang.upper()})\n\n"
try:
with get_db_connection() as conn:
cursor = conn.cursor()
progress(0, desc="Starting...")
yield output_md
# === STEP 1: Find Node PKs ===
progress(0.05, desc="Finding nodes...")
cursor.execute("SELECT node_pk, node_url FROM node_norm WHERE node_url = ?", (exact_path,))
exact_node = cursor.fetchone()
node_pks = []
nodes_found = []
if exact_node:
log_progress(f"Found exact node: {exact_node[1]}", "SUCCESS")
node_pks = [exact_node[0]]
nodes_found = [(exact_node[1], node_url_to_label(exact_node[1]))]
else:
log_progress(f"No exact node, falling back to LIKE...", "WARN")
like_path = f"{exact_path}%"
cursor.execute("SELECT node_pk, node_url FROM node_norm WHERE node_url LIKE ? LIMIT 5", (like_path,))
nodes = cursor.fetchall()
if not nodes:
yield f"# 🧠 '{word}'\n\n⚠️ Not found"
return
node_pks = [n[0] for n in nodes]
nodes_found = [(n[1], node_url_to_label(n[1])) for n in nodes]
for node_url, label in nodes_found[:3]:
output_md += f"**Node:** `{node_url}` → **{label}**\n"
output_md += "\n"
yield output_md
# === STEP 2: Find Relation PKs ===
progress(0.15, desc="Finding relations...")
rel_urls_to_query = tuple(CONCEPTNET_RELATIONS[name] for name in selected_relations if name in CONCEPTNET_RELATIONS)
if not rel_urls_to_query:
output_md += "⚠️ No valid relations selected."
yield output_md
return
rel_placeholders = ','.join(['?'] * len(rel_urls_to_query))
cursor.execute(f"SELECT rel_pk, rel_url FROM rel_norm WHERE rel_url IN ({rel_placeholders})", rel_urls_to_query)
# Create lookup maps
rel_pk_to_name = {}
rel_name_to_pk = {}
rel_name_to_url = {}
for pk, url in cursor.fetchall():
# Find the 'short name' (e.g., 'IsA') from the full URL
for name, url_val in CONCEPTNET_RELATIONS.items():
if url_val == url:
rel_pk_to_name[pk] = name
rel_name_to_pk[name] = pk
rel_name_to_url[name] = url
break
rel_pks_to_query = tuple(rel_pk_to_name.keys())
node_pk_placeholders = ','.join(['?'] * len(node_pks))
rel_pk_placeholders = ','.join(['?'] * len(rel_pks_to_query))
# Buckets for results
outgoing_results = defaultdict(list)
incoming_results = defaultdict(list)
# === STEP 3: Run ONE query for ALL outgoing edges ===
progress(0.4, desc="Querying outgoing edges...")
sql_out = f"""
SELECT
e.rel_fk, n_end.node_url, e.weight
FROM edge_norm e
JOIN node_norm n_end ON e.end_fk = n_end.node_pk
WHERE
e.start_fk IN ({node_pk_placeholders})
AND e.rel_fk IN ({rel_pk_placeholders})
ORDER BY e.weight DESC
LIMIT 200
"""
cursor.execute(sql_out, (*node_pks, *rel_pks_to_query))
for rel_pk, node_url, weight in cursor.fetchall():
rel_name = rel_pk_to_name.get(rel_pk)
if rel_name and len(outgoing_results[rel_name]) < 7:
outgoing_results[rel_name].append((node_url_to_label(node_url), weight))
# === STEP 4: Run ONE query for ALL incoming edges ===
progress(0.7, desc="Querying incoming edges...")
sql_in = f"""
SELECT
e.rel_fk, n_start.node_url, e.weight
FROM edge_norm e
JOIN node_norm n_start ON e.start_fk = n_start.node_pk
WHERE
e.end_fk IN ({node_pk_placeholders})
AND e.rel_fk IN ({rel_pk_placeholders})
ORDER BY e.weight DESC
LIMIT 200
"""
cursor.execute(sql_in, (*node_pks, *rel_pks_to_query))
for rel_pk, node_url, weight in cursor.fetchall():
rel_name = rel_pk_to_name.get(rel_pk)
if rel_name and len(incoming_results[rel_name]) < 7:
incoming_results[rel_name].append((node_url_to_label(node_url), weight))
# === STEP 5: Format results as Markdown ===
progress(0.9, desc="Formatting results...")
total = 0
for rel_name in selected_relations:
if rel_name not in rel_name_to_pk:
continue # Skip if this relation wasn't in the DB
output_md += f"## {rel_name}\n\n"
found = False
out_edges = outgoing_results.get(rel_name, [])
for label, weight in out_edges:
output_md += f"- **{word}** {rel_name} → *{label}* `[{weight:.3f}]`\n"
found = True
total += 1
in_edges = incoming_results.get(rel_name, [])
for label, weight in in_edges:
output_md += f"- *{label}* {rel_name} → **{word}** `[{weight:.3f}]`\n"
found = True
total += 1
if not found:
output_md += "*No results*\n"
output_md += "\n"
yield output_md # Yield after each relation is formatted
output_md += f"---\n**Total relations:** {total}\n"
log_progress(f"Profile complete: {total} relations", "SUCCESS")
progress(1.0, desc="✅ Complete!")
yield output_md
except Exception as e:
log_progress(f"Error: {e}", "ERROR")
import traceback
traceback.print_exc()
yield f"**❌ Error:** {e}"
def run_query(start_node, start_lang, relation, end_node, end_lang, limit, progress=gr.Progress()):
"""
Query builder using fast integer joins.
"""
log_progress(f"Query: start={start_node} ({start_lang}), rel={relation}, end={end_node} ({end_lang})", "INFO")
progress(0, desc="Building...")
if not DB_PATH:
return pd.DataFrame(), "❌ **Error:** Database file not found."
# This is the new, fast query
query = """
SELECT
n_start.node_url AS start_url,
r.rel_url AS relation_url,
n_end.node_url AS end_url,
e.weight
FROM edge_norm e
JOIN node_norm n_start ON e.start_fk = n_start.node_pk
JOIN node_norm n_end ON e.end_fk = n_end.node_pk
JOIN rel_norm r ON e.rel_fk = r.rel_pk
"""
params = []
where_clauses = []
try:
with get_db_connection() as conn:
progress(0.3, desc="Adding filters...")
# Start node - USE start_lang
if start_node and start_node.strip():
if start_node.startswith('http://'):
pattern = f"{start_node}%"
else:
pattern = f"{CONCEPTNET_BASE}/c/{start_lang}/{start_node.strip().lower().replace(' ', '_')}%"
where_clauses.append("n_start.node_url LIKE ?")
params.append(pattern)
# Relation
if relation and relation.strip():
rel_value = CONCEPTNET_RELATIONS.get(relation.strip())
if rel_value:
where_clauses.append("r.rel_url = ?")
params.append(rel_value)
# End node - USE end_lang
if end_node and end_node.strip():
if end_node.startswith('http://'):
pattern = f"{end_node}%"
else:
pattern = f"{CONCEPTNET_BASE}/c/{end_lang}/{end_node.strip().lower().replace(' ', '_')}%"
where_clauses.append("n_end.node_url LIKE ?")
params.append(pattern)
if where_clauses:
query += " WHERE " + " AND ".join(where_clauses)
query += " ORDER BY e.weight DESC LIMIT ?"
params.append(limit)
progress(0.6, desc="Executing...")
start_time = time.time()
df = pd.read_sql_query(query, conn, params=params)
elapsed = time.time() - start_time
log_progress(f"Query done: {len(df)} rows in {elapsed:.2f}s", "SUCCESS")
progress(1.0, desc="Done!")
if df.empty:
return pd.DataFrame(), f"⚠️ No results ({elapsed:.2f}s)"
# Add user-friendly labels from the URLs
df['start_label'] = df['start_url'].apply(node_url_to_label)
df['end_label'] = df['end_url'].apply(node_url_to_label)
df['relation'] = df['relation_url'].apply(lambda x: x.split('/')[-1])
# Reorder columns
df = df[['start_label', 'relation', 'end_label', 'weight', 'start_url', 'end_url', 'relation_url']]
return df, f"✅ {len(df)} results in {elapsed:.2f}s"
except Exception as e:
log_progress(f"Error: {e}", "ERROR")
import traceback
traceback.print_exc()
return pd.DataFrame(), f"❌ {e}"
def run_raw_query(sql_query):
"""Execute a raw SELECT SQL query against the normalized DB."""
if not sql_query.strip().upper().startswith("SELECT"):
return pd.DataFrame(), "❌ Only SELECT queries are allowed."
if not DB_PATH:
return pd.DataFrame(), "❌ **Error:** Database file not found."
try:
with get_db_connection() as conn:
start = time.time()
df = pd.read_sql_query(sql_query, conn)
elapsed = time.time() - start
return df, f"✅ {len(df)} rows in {elapsed:.3f}s"
except Exception as e:
return pd.DataFrame(), f"❌ {e}"
def get_schema_info():
"""
--- REWRITTEN FOR NORMALIZED DB ---
Get schema information for the new database.
"""
if not DB_PATH:
return "❌ **Error:** Database file not found."
md = f"# 📚 Schema (Normalized)\n\n"
md += f"**Repo:** [{NORMALIZED_REPO_ID}](https://huggingface.co/datasets/{NORMALIZED_REPO_ID})\n\n"
md += "**Schema:** Text URLs (`node_norm`, `rel_norm`) are stored once. The `edge_norm` table uses fast integer keys (`_fk`) for joins.\n\n"
try:
with get_db_connection() as conn:
cursor = conn.cursor()
md += "## Tables & Row Counts\n\n"
# Use the new table names
for table in ["node_norm", "rel_norm", "edge_norm"]:
cursor.execute(f"SELECT COUNT(*) FROM {table}")
md += f"- **{table}:** {cursor.fetchone()[0]:,} rows\n"
md += "\n## Indices\n\n"
cursor.execute("SELECT name, sql FROM sqlite_master WHERE type='index' AND sql IS NOT NULL")
for name, sql in cursor.fetchall():
md += f"- **{name}:** `{sql}`\n"
md += "\n## Common Relations (from `rel_norm`)\n\n"
# Query the new relation table
cursor.execute("SELECT rel_url FROM rel_norm ORDER BY rel_url LIMIT 20")
for (rel_url,) in cursor.fetchall():
label = rel_url.split('/')[-1]
md += f"- **{label}:** `{rel_url}`\n"
except Exception as e:
md += f"\n**❌ Error:** {e}\n"
return md
# ===== Build Gradio UI (Mostly Unchanged) =====
with gr.Blocks(title="ConceptNet Explorer", theme=gr.themes.Soft()) as demo:
gr.Markdown("# 🧠 ConceptNet Explorer (Normalized v2)")
gr.Markdown(f"**Repo:** `{NORMALIZED_REPO_ID}` | **Languages:** {', '.join([l.upper() for l in TARGET_LANGUAGES])}")
if not DB_PATH:
gr.Markdown("## ❌ ERROR: DATABASE FILE NOT FOUND")
gr.Markdown(f"This app cannot start because `{NORMALIZED_DB_FILE}` could not be downloaded from `{NORMALIZED_REPO_ID}`. Please check the logs.")
else:
with gr.Tabs():
with gr.TabItem("🔍 Semantic Profile"):
gr.Markdown("**Explore semantic relations for any word. Runs on the fast normalized DB.**")
with gr.Row():
word_input = gr.Textbox(label="Word", placeholder="e.g., dog, hund, perro", value="dog", scale=3)
lang_input = gr.Dropdown(choices=TARGET_LANGUAGES, value="en", label="Language", scale=1)
with gr.Accordion("Select Relations (fewer = faster)", open=False):
relation_input = gr.CheckboxGroup(
choices=list(CONCEPTNET_RELATIONS.keys()),
label="Relations to Query",
value=["IsA", "RelatedTo", "PartOf", "HasA", "UsedFor", "CapableOf", "Synonym", "Antonym", "AtLocation", "HasProperty"]
)
semantic_btn = gr.Button("🔍 Get Semantic Profile", variant="primary", size="lg")
semantic_output = gr.Markdown(value="Click the button to get the semantic profile.")
gr.Examples(
examples=[["dog", "en"], ["hund", "de"], ["perro", "es"], ["chat", "fr"], ["knowledge", "en"]],
inputs=[word_input, lang_input],
label="Examples"
)
with gr.TabItem("⚡ Query Builder"):
gr.Markdown("**Build custom relationship queries (now using fast integer joins).**")
with gr.Row():
start_input = gr.Textbox(label="Start Node (word)", placeholder="dog (optional)")
start_lang = gr.Dropdown(choices=TARGET_LANGUAGES, value="en", label="Start Lang", scale=1)
rel_input = gr.Dropdown(
choices=[""] + list(CONCEPTNET_RELATIONS.keys()),
label="Relation (name)",
value="IsA",
info="Leave blank to query all relations"
)
end_input = gr.Textbox(label="End Node (word)", placeholder="(optional)")
end_lang = gr.Dropdown(choices=TARGET_LANGUAGES, value="en", label="End Lang", scale=1)
limit_slider = gr.Slider(label="Limit", minimum=1, maximum=500, value=50, step=1)
query_btn = gr.Button("▶️ Run Query", variant="primary", size="lg")
status_output = gr.Markdown()
results_output = gr.DataFrame(wrap=True) # Height bug is still fixed
with gr.TabItem("💻 Raw SQL"):
gr.Markdown("**Execute custom `SELECT` SQL queries against the *new normalized schema*.**")
# --- UPDATED Example Query ---
new_example_sql = f"""SELECT
n_start.node_url,
r.rel_url,
n_end.node_url,
e.weight
FROM edge_norm e
JOIN node_norm n_start ON e.start_fk = n_start.node_pk
JOIN node_norm n_end ON e.end_fk = n_end.node_pk
JOIN rel_norm r ON e.rel_fk = r.rel_pk
WHERE n_start.node_url = '{CONCEPTNET_BASE}/c/en/dog'
AND r.rel_url = '{CONCEPTNET_BASE}/r/IsA'
ORDER BY e.weight DESC
LIMIT 10
"""
raw_sql_input = gr.Textbox(
label="SQL Query",
value=new_example_sql,
lines=13,
elem_classes=["font-mono"]
)
raw_btn = gr.Button("▶️ Execute")
raw_status = gr.Markdown()
raw_results = gr.DataFrame() # Height bug is still fixed
with gr.TabItem("📊 Schema"):
gr.Markdown("**View database schema, tables, and indices for the *new normalized DB*.**")
schema_btn = gr.Button("📊 Load Schema Info")
schema_output = gr.Markdown()
# --- Button Click Handlers (All API names preserved) ---
semantic_btn.click(
get_semantic_profile,
inputs=[word_input, lang_input, relation_input],
outputs=semantic_output,
api_name="get_semantic_profile"
)
query_btn.click(
run_query,
inputs=[start_input, start_lang, rel_input, end_input, end_lang, limit_slider],
outputs=[results_output, status_output],
api_name="run_query"
)
raw_btn.click(
run_raw_query,
inputs=raw_sql_input,
outputs=[raw_results, raw_status],
api_name="run_raw_query"
)
demo.load(
get_schema_info,
None,
schema_output,
api_name="get_schema"
)
schema_btn.click(
get_schema_info,
None,
schema_output,
api_name="get_schema"
)
if __name__ == "__main__":
if DB_PATH:
log_progress("APP READY! (Normalized DB)", "SUCCESS")
else:
log_progress("APP LAUNCHING WITH ERRORS (DB NOT FOUND)", "ERROR")
demo.launch(ssr_mode=False)
|