Spaces:
Running
Running
| import duckdb | |
| import gradio as gr | |
| from gradio_client import Client | |
| from sentence_transformers import CrossEncoder | |
| from sentence_transformers import SentenceTransformer | |
| from sentence_transformers.models import StaticEmbedding | |
| from huggingface_hub import get_token | |
| import pandas as pd | |
| static_embedding = StaticEmbedding.from_model2vec("minishlab/potion-base-8M") | |
| model = SentenceTransformer(modules=[static_embedding]) | |
| reranker = CrossEncoder("sentence-transformers/all-MiniLM-L12-v2") | |
| embedding_dimensions = model.get_sentence_embedding_dimension() | |
| dataset_name = "cyrilzakka/pubmed-medline-embeddings" | |
| embedding_column = "embedding" | |
| embedding_column_float = f"{embedding_column}_float" | |
| table_name = "pubmed_medline" | |
| duckdb.sql(query=f""" | |
| INSTALL vss; | |
| LOAD vss; | |
| CREATE TABLE {table_name} AS | |
| SELECT *, {embedding_column}::float[{embedding_dimensions}] as {embedding_column_float} | |
| FROM 'hf://datasets/{dataset_name}/**/*.parquet'; | |
| CREATE INDEX my_hnsw_index ON {table_name} USING HNSW ({embedding_column_float}) WITH (metric = 'cosine'); | |
| """) | |
| def similarity_search(query: str, k: int = 5): | |
| embedding = model.encode(query).tolist() | |
| df = duckdb.sql( | |
| query=f""" | |
| SELECT *, array_cosine_distance({embedding_column_float}, {embedding}::FLOAT[{embedding_dimensions}]) as distance | |
| FROM {table_name} | |
| ORDER BY distance | |
| LIMIT {k}; | |
| """ | |
| ).to_df() | |
| df = df.drop(columns=[embedding_column, embedding_column_float]) | |
| return df | |
| def rerank(query: str, documents: pd.DataFrame) -> pd.DataFrame: | |
| documents = documents.copy() | |
| documents = documents.drop_duplicates("content") | |
| documents["rank"] = reranker.predict([[query, hit] for hit in documents["content"]]) | |
| documents = documents.sort_values(by="rank", ascending=False) | |
| return documents | |
| with gr.Blocks() as demo: | |
| gr.Markdown("""# RAG - PubMed Medline (https://pubmed.ncbi.nlm.nih.gov) | |
| Executes vector search and re-ranking top of [pubmed-medline-embeddings](https://huggingface.co/datasets/cyrilzakka/pubmed-medline-embeddings). | |
| Part of the [Therapeutics Actionability Challenge](https://sail.health/event/sail-2025/program/) Demo.""") | |
| query = gr.Textbox(label="Query") | |
| k = gr.Slider(1, 50, value=5, label="Number of results") | |
| btn = gr.Button("Search") | |
| results = gr.Dataframe(headers=["url", "chunk", "distance"], wrap=True) | |
| btn.click(fn=similarity_search, inputs=[query, k], outputs=[results]) | |
| demo.launch(mcp_server=True) |