Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	Update mingru_lm.py
Browse files- mingru_lm.py +15 -12
    	
        mingru_lm.py
    CHANGED
    
    | @@ -59,18 +59,6 @@ class MinGRU(Module): | |
| 59 | 
             
                        return out
         | 
| 60 | 
             
                    return out, next_prev_hidden
         | 
| 61 |  | 
| 62 | 
            -
            if __name__ == "__main__":
         | 
| 63 | 
            -
                x = torch.rand(2,256,512)
         | 
| 64 | 
            -
                model = MinGRU(dim=512)
         | 
| 65 | 
            -
                out , next_prev_hidden = model(x,return_next_prev_hidden=True)
         | 
| 66 | 
            -
             | 
| 67 | 
            -
             | 
| 68 | 
            -
                print("out",out[0,0,:3])
         | 
| 69 | 
            -
                print("next_prev_hidden",next_prev_hidden[0,0,:3])
         | 
| 70 | 
            -
                print("out shape",out.shape)
         | 
| 71 | 
            -
                print("X shape",x.shape)
         | 
| 72 | 
            -
                assert x.shape == out.shape 
         | 
| 73 | 
            -
             | 
| 74 |  | 
| 75 | 
             
            class FeedForward(nn.Module):
         | 
| 76 | 
             
                def __init__(self, dim, mult=4):
         | 
| @@ -85,6 +73,20 @@ class FeedForward(nn.Module): | |
| 85 | 
             
                def forward(self, x):
         | 
| 86 | 
             
                    return self.net(x)
         | 
| 87 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 88 | 
             
            class RMSNorm(nn.Module):
         | 
| 89 | 
             
                def __init__(self, dim):
         | 
| 90 | 
             
                    super().__init__()
         | 
| @@ -98,6 +100,7 @@ class MinGRU_Layers(nn.Module): | |
| 98 | 
             
                def __init__(self, dim, num_tokens):
         | 
| 99 | 
             
                    super().__init__()
         | 
| 100 | 
             
                    self.emb = nn.Embedding(num_tokens, dim)
         | 
|  | |
| 101 | 
             
                    self.rms_norm = RMSNorm(dim)
         | 
| 102 | 
             
                    self.gru = MinGRU(dim)
         | 
| 103 | 
             
                    self.ff = FeedForward(dim)
         | 
|  | |
| 59 | 
             
                        return out
         | 
| 60 | 
             
                    return out, next_prev_hidden
         | 
| 61 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 62 |  | 
| 63 | 
             
            class FeedForward(nn.Module):
         | 
| 64 | 
             
                def __init__(self, dim, mult=4):
         | 
|  | |
| 73 | 
             
                def forward(self, x):
         | 
| 74 | 
             
                    return self.net(x)
         | 
| 75 |  | 
| 76 | 
            +
            class CausalDepthWiseConv1d(nn.Module):
         | 
| 77 | 
            +
                def __init__(self, dim, kernel_size):
         | 
| 78 | 
            +
                    super().__init__()
         | 
| 79 | 
            +
                    self.kernel_size = kernel_size
         | 
| 80 | 
            +
                    self.net = nn.Sequential(
         | 
| 81 | 
            +
                        nn.Conv1d(dim, dim, kernel_size = kernel_size, groups = dim),
         | 
| 82 | 
            +
                        nn.Conv1d(dim, dim, kernel_size = 1)
         | 
| 83 | 
            +
                    )
         | 
| 84 | 
            +
                def forward(self, x):
         | 
| 85 | 
            +
                    x = x.transpose(1, 2) # b n d -> b d n
         | 
| 86 | 
            +
                    x = F.pad(x, (self.kernel_size - 1, 0), value = 0.)
         | 
| 87 | 
            +
                    x = self.net(x)
         | 
| 88 | 
            +
                    return x.transpose(1, 2) # b d n -> b n d
         | 
| 89 | 
            +
             | 
| 90 | 
             
            class RMSNorm(nn.Module):
         | 
| 91 | 
             
                def __init__(self, dim):
         | 
| 92 | 
             
                    super().__init__()
         | 
|  | |
| 100 | 
             
                def __init__(self, dim, num_tokens):
         | 
| 101 | 
             
                    super().__init__()
         | 
| 102 | 
             
                    self.emb = nn.Embedding(num_tokens, dim)
         | 
| 103 | 
            +
                    self.casual_depth = CausalDepthWiseConv1d(dim=dim,kernel_size=3)
         | 
| 104 | 
             
                    self.rms_norm = RMSNorm(dim)
         | 
| 105 | 
             
                    self.gru = MinGRU(dim)
         | 
| 106 | 
             
                    self.ff = FeedForward(dim)
         | 
