Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForTokenClassification, AutoModelForSequenceClassification, AutoModelForMaskedLM, AutoModel, AutoModelForQuestionAnswering
|
| 4 |
+
import threading
|
| 5 |
+
|
| 6 |
+
# --- configuration: model ids you might want to swap ---
|
| 7 |
+
MODELS = {
|
| 8 |
+
"fill-mask": "indolem/indobert-base-uncased",
|
| 9 |
+
# a sample fine-tuned classifier on IndoNLU (replace with your preferred HF model)
|
| 10 |
+
"sentiment": "ayameRushia/indobert-base-uncased-finetuned-indonlu-smsa",
|
| 11 |
+
# example NER model fine-tuned from Indonesian BERT (replace if you prefer another)
|
| 12 |
+
"ner": "ageng-anugrah/indobert-large-p2-finetuned-ner",
|
| 13 |
+
# QA (if you have a QA model); you can also use a general model but best to use dedicated fine-tuned QA model
|
| 14 |
+
"qa": "indobenchmark/indobert-base-p1",
|
| 15 |
+
# embeddings / feature extraction: use a model that supports sentence embeddings or feature extraction
|
| 16 |
+
"embeddings": "indobenchmark/indobert-base-p1",
|
| 17 |
+
}
|
| 18 |
+
|
| 19 |
+
# pipeline cache
|
| 20 |
+
PIPELINES = {}
|
| 21 |
+
PIPELINE_LOCK = threading.Lock()
|
| 22 |
+
|
| 23 |
+
def get_pipeline(task: str):
|
| 24 |
+
"""Lazy-load pipeline for a given task. Thread-safe."""
|
| 25 |
+
with PIPELINE_LOCK:
|
| 26 |
+
if task in PIPELINES:
|
| 27 |
+
return PIPELINES[task]
|
| 28 |
+
|
| 29 |
+
if task == "fill-mask":
|
| 30 |
+
p = pipeline("fill-mask", model=MODELS["fill-mask"], tokenizer=MODELS["fill-mask"])
|
| 31 |
+
elif task == "sentiment":
|
| 32 |
+
p = pipeline("text-classification", model=MODELS["sentiment"], tokenizer=MODELS["sentiment"], return_all_scores=True)
|
| 33 |
+
elif task == "ner":
|
| 34 |
+
# aggregation_strategy avoids repeated tokens; set to "simple" or None to see raw results
|
| 35 |
+
p = pipeline("token-classification", model=MODELS["ner"], tokenizer=MODELS["ner"], aggregation_strategy="simple")
|
| 36 |
+
elif task == "qa":
|
| 37 |
+
# For QA we return an extractive QA pipeline
|
| 38 |
+
p = pipeline("question-answering", model=MODELS["qa"], tokenizer=MODELS["qa"])
|
| 39 |
+
elif task == "embeddings":
|
| 40 |
+
# Use feature-extraction pipeline (returns token embeddings; we'll average to produce sentence-level)
|
| 41 |
+
p = pipeline("feature-extraction", model=MODELS["embeddings"], tokenizer=MODELS["embeddings"])
|
| 42 |
+
else:
|
| 43 |
+
raise ValueError(f"Unknown task: {task}")
|
| 44 |
+
|
| 45 |
+
PIPELINES[task] = p
|
| 46 |
+
return p
|
| 47 |
+
|
| 48 |
+
# --- functions for each task ---
|
| 49 |
+
|
| 50 |
+
def run_fill_mask(text):
|
| 51 |
+
p = get_pipeline("fill-mask")
|
| 52 |
+
# The fill-mask pipeline expects a special mask token like <mask> or [MASK] depending on model/tokenizer.
|
| 53 |
+
# We'll try both: if the chosen model uses [MASK], user should include it; otherwise replace token.
|
| 54 |
+
try:
|
| 55 |
+
outputs = p(text)
|
| 56 |
+
except Exception as e:
|
| 57 |
+
return f"Error running fill-mask: {e}"
|
| 58 |
+
# Format results
|
| 59 |
+
return "\n".join([f"{o['sequence']} (score: {o['score']:.4f})" for o in outputs])
|
| 60 |
+
|
| 61 |
+
def run_sentiment(text):
|
| 62 |
+
p = get_pipeline("sentiment")
|
| 63 |
+
try:
|
| 64 |
+
outputs = p(text)
|
| 65 |
+
except Exception as e:
|
| 66 |
+
return f"Error running sentiment: {e}"
|
| 67 |
+
# outputs is list of dicts with label/score
|
| 68 |
+
return "\n".join([f"{o['label']}: {o['score']:.4f}" for o in outputs])
|
| 69 |
+
|
| 70 |
+
def run_ner(text):
|
| 71 |
+
p = get_pipeline("ner")
|
| 72 |
+
try:
|
| 73 |
+
ents = p(text)
|
| 74 |
+
except Exception as e:
|
| 75 |
+
return f"Error running NER: {e}"
|
| 76 |
+
if not ents:
|
| 77 |
+
return "No entities found."
|
| 78 |
+
# Format: label (span): text
|
| 79 |
+
lines = []
|
| 80 |
+
for e in ents:
|
| 81 |
+
label = e.get("entity_group", e.get("entity"))
|
| 82 |
+
span = e.get("word", "")
|
| 83 |
+
score = e.get("score", 0.0)
|
| 84 |
+
lines.append(f"{label} ({score:.3f}): {span}")
|
| 85 |
+
return "\n".join(lines)
|
| 86 |
+
|
| 87 |
+
def run_qa(context, question):
|
| 88 |
+
p = get_pipeline("qa")
|
| 89 |
+
try:
|
| 90 |
+
out = p(question=question, context=context)
|
| 91 |
+
except Exception as e:
|
| 92 |
+
return f"Error running QA: {e}"
|
| 93 |
+
return f"Answer: {out.get('answer')} (score: {out.get('score', 0):.4f})"
|
| 94 |
+
|
| 95 |
+
def run_embeddings(text):
|
| 96 |
+
p = get_pipeline("embeddings")
|
| 97 |
+
try:
|
| 98 |
+
feats = p(text) # returns nested token embeddings
|
| 99 |
+
except Exception as e:
|
| 100 |
+
return f"Error extracting embeddings: {e}"
|
| 101 |
+
# average token embeddings to get sentence vector
|
| 102 |
+
import numpy as np
|
| 103 |
+
arr = np.array(feats) # shape: (1, seq_len, hidden)
|
| 104 |
+
sent = arr.mean(axis=1) # (1, hidden)
|
| 105 |
+
vec = sent[0].tolist()
|
| 106 |
+
# For display keep a short preview
|
| 107 |
+
preview = ", ".join([f"{v:.4f}" for v in vec[:8]]) + ("..." if len(vec) > 8 else "")
|
| 108 |
+
return f"Embedding (dim {len(vec)}): [{preview}]"
|
| 109 |
+
|
| 110 |
+
# --- Gradio UI ---
|
| 111 |
+
|
| 112 |
+
with gr.Blocks(title="Indonesian NLP Playground (IndoBERT / IndoLEM / IndoNLU)") as demo:
|
| 113 |
+
gr.Markdown("## Indonesian NLP Playground\nChoose a task, enter Indonesian text, and run IndoBERT / IndoLEM-powered models.\n\nModels are loaded lazily to save memory. You can replace model ids in the `MODELS` dict.")
|
| 114 |
+
with gr.Row():
|
| 115 |
+
task = gr.Dropdown(choices=["fill-mask", "sentiment", "ner", "qa", "embeddings"], value="sentiment", label="Task")
|
| 116 |
+
input_text = gr.Textbox(lines=4, placeholder="Type Indonesian text here...", label="Input Text")
|
| 117 |
+
# extra inputs for QA
|
| 118 |
+
qa_question = gr.Textbox(lines=2, placeholder="Question (for QA)", visible=False, label="Question (QA only)")
|
| 119 |
+
output = gr.Textbox(lines=10, label="Output")
|
| 120 |
+
|
| 121 |
+
def on_task_change(t):
|
| 122 |
+
qa_question.visible = (t == "qa")
|
| 123 |
+
return gr.update(visible=(t == "qa"))
|
| 124 |
+
|
| 125 |
+
task.change(on_task_change, inputs=[task], outputs=[qa_question])
|
| 126 |
+
|
| 127 |
+
def run(selected_task, text, question):
|
| 128 |
+
if selected_task == "fill-mask":
|
| 129 |
+
return run_fill_mask(text)
|
| 130 |
+
if selected_task == "sentiment":
|
| 131 |
+
return run_sentiment(text)
|
| 132 |
+
if selected_task == "ner":
|
| 133 |
+
return run_ner(text)
|
| 134 |
+
if selected_task == "qa":
|
| 135 |
+
return run_qa(text, question)
|
| 136 |
+
if selected_task == "embeddings":
|
| 137 |
+
return run_embeddings(text)
|
| 138 |
+
return "Unknown task."
|
| 139 |
+
|
| 140 |
+
btn = gr.Button("Run")
|
| 141 |
+
btn.click(run, inputs=[task, input_text, qa_question], outputs=[output])
|
| 142 |
+
|
| 143 |
+
if __name__ == "__main__":
|
| 144 |
+
demo.launch()
|