Spaces:
Runtime error
Runtime error
Test video output
Browse files- README.md +9 -4
- app.py +113 -0
- packages.txt +1 -0
- requirements.txt +12 -0
README.md
CHANGED
|
@@ -1,8 +1,8 @@
|
|
| 1 |
---
|
| 2 |
title: Swinunetr Dicom Video
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 3.0.24
|
| 8 |
app_file: app.py
|
|
@@ -10,4 +10,9 @@ pinned: false
|
|
| 10 |
license: apache-2.0
|
| 11 |
---
|
| 12 |
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
title: Swinunetr Dicom Video
|
| 3 |
+
emoji: ππ¬
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: purple
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 3.0.24
|
| 8 |
app_file: app.py
|
|
|
|
| 10 |
license: apache-2.0
|
| 11 |
---
|
| 12 |
|
| 13 |
+
This repository contains the code for UNETR: Transformers for 3D Medical Image Segmentation. UNETR is the first 3D segmentation network that uses a pure vision transformer as its encoder without relying on CNNs for feature extraction. The code presents a volumetric (3D) multi-organ segmentation application using the BTCV challenge dataset.
|
| 14 |
+
|
| 15 |
+
Check out the Beyond the Cranial Vault source Swin-UNET models [here](https://huggingface.co/darragh/swinunetr-btcv-small). Also in the link, you can see links to the original BTCV winning solution.
|
| 16 |
+
|
| 17 |
+
This is a small demo on a subset of the test data for the [BTCV competition](https://zenodo.org/record/1169361#.YtGvn-xKhb8).
|
| 18 |
+
|
app.py
ADDED
|
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import sys
|
| 2 |
+
import os
|
| 3 |
+
import glob
|
| 4 |
+
import shutil
|
| 5 |
+
import torch
|
| 6 |
+
import argparse
|
| 7 |
+
import mediapy
|
| 8 |
+
import cv2
|
| 9 |
+
import numpy as np
|
| 10 |
+
import gradio as gr
|
| 11 |
+
from skimage import color, img_as_ubyte
|
| 12 |
+
from monai import transforms, data
|
| 13 |
+
|
| 14 |
+
os.system("git clone https://github.com/darraghdog/Project-MONAI-research-contributions pmrc")
|
| 15 |
+
sys.path.append("pmrc/SwinUNETR/BTCV")
|
| 16 |
+
from swinunetr import SwinUnetrModelForInference, SwinUnetrConfig
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
ffmpeg_path = shutil.which('ffmpeg')
|
| 20 |
+
mediapy.set_ffmpeg(ffmpeg_path)
|
| 21 |
+
|
| 22 |
+
model = SwinUnetrModelForInference.from_pretrained('darragh/swinunetr-btcv-tiny')
|
| 23 |
+
model.eval()
|
| 24 |
+
|
| 25 |
+
input_files = glob.glob('pmrc/SwinUNETR/BTCV/dataset/imagesSampleTs/*.nii.gz')
|
| 26 |
+
input_files = dict((f.split('/')[-1], f) for f in input_files)
|
| 27 |
+
|
| 28 |
+
# Load and process dicom with monai transforms
|
| 29 |
+
test_transform = transforms.Compose(
|
| 30 |
+
[
|
| 31 |
+
transforms.LoadImaged(keys=["image"]),
|
| 32 |
+
transforms.AddChanneld(keys=["image"]),
|
| 33 |
+
transforms.Spacingd(keys="image",
|
| 34 |
+
pixdim=(1.5, 1.5, 2.0),
|
| 35 |
+
mode="bilinear"),
|
| 36 |
+
transforms.ScaleIntensityRanged(keys=["image"],
|
| 37 |
+
a_min=-175.0,
|
| 38 |
+
a_max=250.0,
|
| 39 |
+
b_min=0.0,
|
| 40 |
+
b_max=1.0,
|
| 41 |
+
clip=True),
|
| 42 |
+
# transforms.Resized(keys=["image"], spatial_size = (256,256,-1)),
|
| 43 |
+
transforms.ToTensord(keys=["image"]),
|
| 44 |
+
])
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
# Create Data Loader
|
| 49 |
+
def create_dl(test_files):
|
| 50 |
+
ds = test_transform(test_files)
|
| 51 |
+
loader = data.DataLoader(ds,
|
| 52 |
+
batch_size=1,
|
| 53 |
+
shuffle=False)
|
| 54 |
+
return loader
|
| 55 |
+
|
| 56 |
+
# Inference and video generation
|
| 57 |
+
def generate_dicom_video(selected_file):
|
| 58 |
+
|
| 59 |
+
test_file = input_files[selected_file]
|
| 60 |
+
test_files = [{'image': test_file}]
|
| 61 |
+
dl = create_dl(test_files)
|
| 62 |
+
batch = next(iter(dl))
|
| 63 |
+
|
| 64 |
+
tst_inputs = batch["image"]
|
| 65 |
+
tst_inputs = tst_inputs[:,:,:,:,-32:]
|
| 66 |
+
|
| 67 |
+
with torch.no_grad():
|
| 68 |
+
outputs = model(tst_inputs,
|
| 69 |
+
(96,96,96),
|
| 70 |
+
8,
|
| 71 |
+
overlap=0.5,
|
| 72 |
+
mode="gaussian")
|
| 73 |
+
tst_outputs = torch.softmax(outputs.logits, 1)
|
| 74 |
+
tst_outputs = torch.argmax(tst_outputs, axis=1)
|
| 75 |
+
|
| 76 |
+
# Write frames to video
|
| 77 |
+
for inp, outp in zip(tst_inputs, tst_outputs):
|
| 78 |
+
|
| 79 |
+
frames = []
|
| 80 |
+
for idx in range(inp.shape[-1]):
|
| 81 |
+
# Segmentation
|
| 82 |
+
seg = outp[:,:,idx].numpy().astype(np.uint8)
|
| 83 |
+
# Input dicom frame
|
| 84 |
+
img = (inp[0,:,:,idx]*255).numpy().astype(np.uint8)
|
| 85 |
+
img = cv2.cvtColor(img,cv2.COLOR_GRAY2RGB)
|
| 86 |
+
frame = color.label2rgb(seg,img, bg_label = 0)
|
| 87 |
+
frame = img_as_ubyte(frame)
|
| 88 |
+
frame = np.concatenate((img, frame), 1)
|
| 89 |
+
frames.append(frame)
|
| 90 |
+
mediapy.write_video("dicom.mp4", frames, fps=4)
|
| 91 |
+
|
| 92 |
+
return 'dicom.mp4'
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
'''
|
| 96 |
+
test_file = glob.glob('pmrc/SwinUNETR/BTCV/dataset/imagesSampleTs/*.nii.gz')[0]
|
| 97 |
+
generate_dicom_video(test_file)
|
| 98 |
+
'''
|
| 99 |
+
|
| 100 |
+
demo = gr.Blocks()
|
| 101 |
+
|
| 102 |
+
with demo:
|
| 103 |
+
selected_dicom_key = gr.inputs.Dropdown(
|
| 104 |
+
choices=sorted(input_files),
|
| 105 |
+
type="value",
|
| 106 |
+
label="Select a dicom file")
|
| 107 |
+
button_gen_video = gr.Button("Generate Video")
|
| 108 |
+
output_interpolation = gr.Video(label="Generated Video")
|
| 109 |
+
button_gen_video.click(fn=generate_dicom_video, inputs=selected_dicom_key, outputs=output_interpolation)
|
| 110 |
+
|
| 111 |
+
demo.launch(debug=True, enable_queue=True)
|
| 112 |
+
|
| 113 |
+
|
packages.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
ffmpeg
|
requirements.txt
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers==4.20.1
|
| 2 |
+
torch==1.10.0
|
| 3 |
+
|
| 4 |
+
git+https://github.com/Project-MONAI/MONAI#[email protected]+271.g07de215c
|
| 5 |
+
nibabel==3.1.1
|
| 6 |
+
tqdm==4.59.0
|
| 7 |
+
einops==0.4.1
|
| 8 |
+
tensorboardX==2.1
|
| 9 |
+
scipy==1.5.0
|
| 10 |
+
mediapy==1.0.3
|
| 11 |
+
scikit-image==0.17.2
|
| 12 |
+
opencv-python==4.6.0.66
|