|
|
|
|
|
import os |
|
|
import gradio as gr |
|
|
from pinecone import Pinecone, ServerlessSpec |
|
|
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, StorageContext, Settings |
|
|
from llama_index.vector_stores.pinecone import PineconeVectorStore |
|
|
from llama_index.embeddings.openai import OpenAIEmbedding |
|
|
from llama_index.llms.openai import OpenAI |
|
|
|
|
|
|
|
|
SYSTEM_PROMPT = """You are Aisha, a polite and professional Insurance assistant. |
|
|
Answer ONLY using the information found in the indexed insurance document(s). |
|
|
If the answer is not in the document(s), say: "I couldn’t find that in the document." |
|
|
Keep responses concise, helpful, and courteous. |
|
|
""" |
|
|
|
|
|
|
|
|
PINECONE_API_KEY = os.getenv("PINECONE_API_KEY") |
|
|
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") |
|
|
if not PINECONE_API_KEY or not OPENAI_API_KEY: |
|
|
raise RuntimeError("Missing PINECONE_API_KEY or OPENAI_API_KEY (set them in Space → Settings → Variables).") |
|
|
|
|
|
DATA_DIR = "data" |
|
|
LOGO_PATH = os.path.join(DATA_DIR, "dds_logo.png") |
|
|
if not os.path.exists(LOGO_PATH): |
|
|
raise RuntimeError("Logo not found: data/dds_logo.png.png (commit it to your Space repo).") |
|
|
|
|
|
EMBED_MODEL = "text-embedding-3-small" |
|
|
LLM_MODEL = "gpt-4o-mini" |
|
|
TOP_K = 4 |
|
|
|
|
|
|
|
|
Settings.embed_model = OpenAIEmbedding(model=EMBED_MODEL, api_key=OPENAI_API_KEY) |
|
|
Settings.llm = OpenAI(model=LLM_MODEL, api_key=OPENAI_API_KEY, system_prompt=SYSTEM_PROMPT) |
|
|
|
|
|
pc = Pinecone(api_key=PINECONE_API_KEY) |
|
|
def ensure_index(name: str, dim: int = 1536): |
|
|
names = [i["name"] for i in pc.list_indexes()] |
|
|
if name not in names: |
|
|
pc.create_index( |
|
|
name=name, dimension=dim, metric="cosine", |
|
|
spec=ServerlessSpec(cloud="aws", region="us-east-1"), |
|
|
) |
|
|
return pc.Index(name) |
|
|
|
|
|
|
|
|
pinecone_index = ensure_index("dds-insurance-index", dim=1536) |
|
|
vector_store = PineconeVectorStore(pinecone_index=pinecone_index) |
|
|
|
|
|
def bootstrap_index(): |
|
|
if not os.path.isdir(DATA_DIR): |
|
|
raise RuntimeError("No 'data/' directory found. Commit your documents to data/ in the Space repo.") |
|
|
docs = SimpleDirectoryReader(DATA_DIR).load_data() |
|
|
if not docs: |
|
|
raise RuntimeError("No documents found in data/. Add e.g., data/insurance.pdf") |
|
|
storage_ctx = StorageContext.from_defaults(vector_store=vector_store) |
|
|
VectorStoreIndex.from_documents(docs, storage_context=storage_ctx, show_progress=True) |
|
|
|
|
|
bootstrap_index() |
|
|
|
|
|
def answer(query: str) -> str: |
|
|
if not query.strip(): |
|
|
return "Please enter a question (or select one from the FAQ list)." |
|
|
index = VectorStoreIndex.from_vector_store(vector_store) |
|
|
resp = index.as_query_engine(similarity_top_k=TOP_K).query(query) |
|
|
return str(resp) |
|
|
|
|
|
FAQS = [ |
|
|
"", |
|
|
"What benefits are covered under the policy?", |
|
|
"How do I file a claim and what documents are required?", |
|
|
"What are the exclusions and limitations?", |
|
|
"Is pre-authorization needed for hospitalization?", |
|
|
"What is the reimbursement timeline?", |
|
|
"How are outpatient vs inpatient services handled?", |
|
|
"How can I check my network hospitals/clinics?", |
|
|
"What is the co-pay or deductible policy?", |
|
|
] |
|
|
|
|
|
def use_faq(selected_faq: str, free_text: str): |
|
|
prompt = (selected_faq or "").strip() or (free_text or "").strip() |
|
|
if not prompt: |
|
|
return "", "Please select a FAQ or type your question." |
|
|
return prompt, answer(prompt) |
|
|
|
|
|
|
|
|
CSS = """ |
|
|
.header { display:flex; flex-direction:column; align-items:center; gap:6px; } |
|
|
.logo img { width:300px; height:300px; object-fit:contain; } /* fixed 300x300 */ |
|
|
.title { text-align:center; font-weight:700; font-size:1.4rem; margin:6px 0 0 0; } |
|
|
.subnote { text-align:center; margin-top:-2px; opacity:0.8; } |
|
|
""" |
|
|
|
|
|
with gr.Blocks(css=CSS, theme=gr.themes.Soft()) as demo: |
|
|
with gr.Row(): |
|
|
with gr.Column(): |
|
|
gr.Markdown("<div class='header'>") |
|
|
gr.Image(value=LOGO_PATH, show_label=False, elem_classes=["logo"]) |
|
|
gr.Markdown( |
|
|
"<h1 class='title'>DDS Insurance Q&A — RAG Assistant</h1>" |
|
|
"<p class='subnote'>Answers strictly from your insurance document(s)</p>" |
|
|
) |
|
|
gr.Markdown("</div>") |
|
|
|
|
|
with gr.Row(): |
|
|
with gr.Column(scale=1): |
|
|
gr.Markdown("### Ask from Frequently Asked Questions") |
|
|
faq = gr.Dropdown(choices=FAQS, value=FAQS[0], label="Select a common question") |
|
|
|
|
|
gr.Markdown("### Or type your question") |
|
|
user_q = gr.Textbox( |
|
|
label="Your question", |
|
|
placeholder="e.g., What is covered under outpatient benefits?", |
|
|
lines=2 |
|
|
) |
|
|
ask_btn = gr.Button("Ask", variant="primary") |
|
|
|
|
|
with gr.Column(scale=1): |
|
|
chosen_prompt = gr.Textbox(label="Query sent", interactive=False) |
|
|
answer_box = gr.Markdown() |
|
|
|
|
|
ask_btn.click(use_faq, inputs=[faq, user_q], outputs=[chosen_prompt, answer_box]) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
demo.launch() |
|
|
|