Spaces:
Running
Running
Commit
·
d9223ba
0
Parent(s):
Initial commit
Browse files- .gitattributes +2 -0
- .gitignore +46 -0
- Colab_Runner.ipynb +83 -0
- README.md +39 -0
- app.py +381 -0
- requirements.txt +10 -0
- utils.py +420 -0
.gitattributes
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.jpg filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.png filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Python
|
| 2 |
+
__pycache__/
|
| 3 |
+
*.py[cod]
|
| 4 |
+
*$py.class
|
| 5 |
+
*.so
|
| 6 |
+
.Python
|
| 7 |
+
env/
|
| 8 |
+
build/
|
| 9 |
+
develop-eggs/
|
| 10 |
+
dist/
|
| 11 |
+
downloads/
|
| 12 |
+
eggs/
|
| 13 |
+
.eggs/
|
| 14 |
+
lib/
|
| 15 |
+
lib64/
|
| 16 |
+
parts/
|
| 17 |
+
sdist/
|
| 18 |
+
var/
|
| 19 |
+
wheels/
|
| 20 |
+
*.egg-info/
|
| 21 |
+
.installed.cfg
|
| 22 |
+
*.egg
|
| 23 |
+
|
| 24 |
+
# Virtual Environments
|
| 25 |
+
venv/
|
| 26 |
+
.env
|
| 27 |
+
.venv
|
| 28 |
+
|
| 29 |
+
# Streamlit
|
| 30 |
+
.streamlit/
|
| 31 |
+
secrets.toml
|
| 32 |
+
|
| 33 |
+
# IDEs
|
| 34 |
+
.vscode/
|
| 35 |
+
.idea/
|
| 36 |
+
|
| 37 |
+
# Large Files / Data
|
| 38 |
+
*.jpg
|
| 39 |
+
*.jpeg
|
| 40 |
+
*.png
|
| 41 |
+
*.zip
|
| 42 |
+
*_crops/
|
| 43 |
+
annotations*.json
|
| 44 |
+
|
| 45 |
+
# Deployment logs
|
| 46 |
+
*.log
|
Colab_Runner.ipynb
ADDED
|
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"nbformat": 4,
|
| 3 |
+
"nbformat_minor": 0,
|
| 4 |
+
"metadata": {
|
| 5 |
+
"colab": {
|
| 6 |
+
"provenance": [],
|
| 7 |
+
"gpuType": "T4"
|
| 8 |
+
},
|
| 9 |
+
"kernelspec": {
|
| 10 |
+
"name": "python3",
|
| 11 |
+
"display_name": "Python 3"
|
| 12 |
+
},
|
| 13 |
+
"language_info": {
|
| 14 |
+
"name": "python"
|
| 15 |
+
}
|
| 16 |
+
},
|
| 17 |
+
"cells": [
|
| 18 |
+
{
|
| 19 |
+
"cell_type": "markdown",
|
| 20 |
+
"source": [
|
| 21 |
+
"# 🚀 Annotation Assistant - Colab Launcher\n",
|
| 22 |
+
"**Instructions:**\n",
|
| 23 |
+
"1. Upload all project files (`app.py`, `utils.py`, `requirements.txt`) to the details file area on the left.\n",
|
| 24 |
+
"2. Add your Ngrok Authtoken below.\n",
|
| 25 |
+
"3. Run all cells."
|
| 26 |
+
],
|
| 27 |
+
"metadata": {
|
| 28 |
+
"id": "intro_md"
|
| 29 |
+
}
|
| 30 |
+
},
|
| 31 |
+
{
|
| 32 |
+
"cell_type": "code",
|
| 33 |
+
"source": [
|
| 34 |
+
"# 1. Install Dependencies\n",
|
| 35 |
+
"!pip install -r requirements.txt"
|
| 36 |
+
],
|
| 37 |
+
"metadata": {
|
| 38 |
+
"id": "install_deps"
|
| 39 |
+
},
|
| 40 |
+
"execution_count": null,
|
| 41 |
+
"outputs": []
|
| 42 |
+
},
|
| 43 |
+
{
|
| 44 |
+
"cell_type": "code",
|
| 45 |
+
"source": [
|
| 46 |
+
"# 2. Authenticate ngrok\n",
|
| 47 |
+
"# REPLACE 'YOUR_TOKEN' WITH YOUR ACTUAL TOKEN\n",
|
| 48 |
+
"from pyngrok import ngrok\n",
|
| 49 |
+
"ngrok.set_auth_token(\"YOUR_NGROK_AUTHTOKEN_HERE\")"
|
| 50 |
+
],
|
| 51 |
+
"metadata": {
|
| 52 |
+
"id": "auth_ngrok"
|
| 53 |
+
},
|
| 54 |
+
"execution_count": null,
|
| 55 |
+
"outputs": []
|
| 56 |
+
},
|
| 57 |
+
{
|
| 58 |
+
"cell_type": "code",
|
| 59 |
+
"source": [
|
| 60 |
+
"# 3. Run the App\n",
|
| 61 |
+
"import os\n",
|
| 62 |
+
"import time\n",
|
| 63 |
+
"from pyngrok import ngrok\n",
|
| 64 |
+
"\n",
|
| 65 |
+
"# Kill previous tunnels\n",
|
| 66 |
+
"ngrok.kill()\n",
|
| 67 |
+
"\n",
|
| 68 |
+
"# Run Streamlit in background\n",
|
| 69 |
+
"get_ipython().system_raw('streamlit run app.py &')\n",
|
| 70 |
+
"\n",
|
| 71 |
+
"# Open Tunnel\n",
|
| 72 |
+
"time.sleep(5) # Wait for start\n",
|
| 73 |
+
"public_url = ngrok.connect(8501).public_url\n",
|
| 74 |
+
"print(f\"🚀 Application Live at: {public_url}\")"
|
| 75 |
+
],
|
| 76 |
+
"metadata": {
|
| 77 |
+
"id": "run_app"
|
| 78 |
+
},
|
| 79 |
+
"execution_count": null,
|
| 80 |
+
"outputs": []
|
| 81 |
+
}
|
| 82 |
+
]
|
| 83 |
+
}
|
README.md
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ✨ Annotation Assistant
|
| 2 |
+
|
| 3 |
+

|
| 4 |
+
|
| 5 |
+
## Overview
|
| 6 |
+
Annotation Assistant is a state-of-the-art **Vision-Language Object Detection** tool. It combines the power of **Qwen-VL (4B)** with a premium, user-friendly interface to make labeled data creation effortless.
|
| 7 |
+
|
| 8 |
+
Unlike standard detection tools, this assistant is **conversational**. You can refine detections naturally (e.g., *"Also find the cup"*), and the AI intelligently merges new findings with existing ones.
|
| 9 |
+
|
| 10 |
+
## Key Features
|
| 11 |
+
|
| 12 |
+
### 🧠 **Intelligent Memory & Context**
|
| 13 |
+
The Assistant remembers what it has already found.
|
| 14 |
+
* **No Amnesia**: Unlike basic wrappers, this tool feeds its own previous detections back into the context.
|
| 15 |
+
* **Example**: If you say *"Find the laptop"* and then *"Find the remaining objects"*, it understands what "remaining" means because it knows the laptop is already detected.
|
| 16 |
+
|
| 17 |
+
### 🎯 **Smart Refinement Logic**
|
| 18 |
+
We implemented a custom **Weighted Merge Algorithm** to handle updates:
|
| 19 |
+
* **Refinement**: If you draw a better box for `"shirt"` over an existing one (>80% overlap), it **replaces** the old one.
|
| 20 |
+
* **distinct Objects**: If you seek a second `"shirt"` elsewhere (low overlap), it **adds** it as a new object.
|
| 21 |
+
* Result: NO duplicate ghost boxes, NO accidental deletions.
|
| 22 |
+
|
| 23 |
+
### 👁️ **Explainable AI (Reasoning)**
|
| 24 |
+
Don't just trust the box. The Assistant provides a **Reasoning Stream** explaining *why* it detected an object.
|
| 25 |
+
* *Example*: "Detected silver laptop due to distinct Apple logo and metallic finish."
|
| 26 |
+
|
| 27 |
+
### 🎨 **Premium "Hero" Interface**
|
| 28 |
+
* **Single-Column Layout**: Your image takes center stage.
|
| 29 |
+
* **Dynamic Resizing**: Use the slider to scale the view from 300px to 1500px without losing layout structure.
|
| 30 |
+
* **Visuals**: Deep Space gradient theme, glassmorphism metrics, and auto-centering.
|
| 31 |
+
|
| 32 |
+
## Quick Start
|
| 33 |
+
1. **Upload**: Drag & Drop your image into the central hub.
|
| 34 |
+
2. **Prompt**: Type what you're looking for (e.g., *"Find all branded items"*).
|
| 35 |
+
3. **Refine**: Chat with the AI to fix mistakes or add more items.
|
| 36 |
+
4. **Download**: Export your data as **COCO JSON** or download a **ZIP of cropped images**.
|
| 37 |
+
|
| 38 |
+
---
|
| 39 |
+
*Built with Streamlit, Qwen-VL, and ❤️.*
|
app.py
ADDED
|
@@ -0,0 +1,381 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import time
|
| 3 |
+
import utils
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import numpy as np
|
| 6 |
+
import uuid
|
| 7 |
+
|
| 8 |
+
# Set page config
|
| 9 |
+
st.set_page_config(page_title="Annotation Assistant", layout="wide", page_icon="✨")
|
| 10 |
+
|
| 11 |
+
# --- Premium Custom CSS ---
|
| 12 |
+
st.markdown("""
|
| 13 |
+
<style>
|
| 14 |
+
@import url('https://fonts.googleapis.com/css2?family=Outfit:wght@300;400;600&display=swap');
|
| 15 |
+
|
| 16 |
+
/* Global Theme */
|
| 17 |
+
html, body, [class*="css"] {
|
| 18 |
+
font-family: 'Outfit', sans-serif;
|
| 19 |
+
}
|
| 20 |
+
|
| 21 |
+
/* Background Gradient - "Deep Space" Theme */
|
| 22 |
+
.stApp {
|
| 23 |
+
background: radial-gradient(circle at top left, #1a202c, #0d1117);
|
| 24 |
+
}
|
| 25 |
+
|
| 26 |
+
/* Sidebar Styling */
|
| 27 |
+
section[data-testid="stSidebar"] {
|
| 28 |
+
background-color: #111827;
|
| 29 |
+
border-right: 1px solid #1F2937;
|
| 30 |
+
}
|
| 31 |
+
|
| 32 |
+
/* Hide Header and Default Elements */
|
| 33 |
+
header {visibility: hidden;}
|
| 34 |
+
.block-container {
|
| 35 |
+
padding-top: 1rem;
|
| 36 |
+
padding-bottom: 5rem;
|
| 37 |
+
max_width: 1000px;
|
| 38 |
+
}
|
| 39 |
+
|
| 40 |
+
/* Headers */
|
| 41 |
+
h1 {
|
| 42 |
+
background: -webkit-linear-gradient(45deg, #60A5FA, #34D399);
|
| 43 |
+
-webkit-background-clip: text;
|
| 44 |
+
-webkit-text-fill-color: transparent;
|
| 45 |
+
font-weight: 600;
|
| 46 |
+
letter-spacing: -0.02em;
|
| 47 |
+
}
|
| 48 |
+
|
| 49 |
+
/* Dotted Upload Box */
|
| 50 |
+
[data-testid='stFileUploader'] section {
|
| 51 |
+
border: 1px dashed #4A5568;
|
| 52 |
+
background-color: rgba(255, 255, 255, 0.02);
|
| 53 |
+
border-radius: 16px;
|
| 54 |
+
padding: 4rem 2rem;
|
| 55 |
+
min-height: 300px;
|
| 56 |
+
align-items: center;
|
| 57 |
+
justify-content: center;
|
| 58 |
+
transition: all 0.3s ease;
|
| 59 |
+
}
|
| 60 |
+
[data-testid='stFileUploader'] section:hover {
|
| 61 |
+
background-color: rgba(255, 255, 255, 0.05);
|
| 62 |
+
border-color: #60A5FA;
|
| 63 |
+
cursor: pointer;
|
| 64 |
+
box-shadow: 0 0 25px rgba(96, 165, 250, 0.15);
|
| 65 |
+
transform: scale(1.01);
|
| 66 |
+
}
|
| 67 |
+
|
| 68 |
+
/* Buttons - "Glass" Style */
|
| 69 |
+
.stButton > button {
|
| 70 |
+
border: 1px solid rgba(255,255,255,0.1);
|
| 71 |
+
border-radius: 8px;
|
| 72 |
+
background: rgba(255,255,255,0.05);
|
| 73 |
+
color: #E2E8F0;
|
| 74 |
+
font-weight: 500;
|
| 75 |
+
backdrop-filter: blur(5px);
|
| 76 |
+
transition: all 0.2s ease;
|
| 77 |
+
}
|
| 78 |
+
.stButton > button:hover {
|
| 79 |
+
background: rgba(255,255,255,0.1);
|
| 80 |
+
border-color: #60A5FA;
|
| 81 |
+
color: #FFFFFF;
|
| 82 |
+
box-shadow: 0 4px 12px rgba(0,0,0,0.2);
|
| 83 |
+
}
|
| 84 |
+
|
| 85 |
+
/* Secondary/Reset Button */
|
| 86 |
+
button[kind="secondary"] {
|
| 87 |
+
color: #F87171 !important;
|
| 88 |
+
border-color: rgba(248, 113, 113, 0.2) !important;
|
| 89 |
+
}
|
| 90 |
+
button[kind="secondary"]:hover {
|
| 91 |
+
background: rgba(248, 113, 113, 0.1) !important;
|
| 92 |
+
border-color: #F87171 !important;
|
| 93 |
+
box-shadow: 0 0 10px rgba(248, 113, 113, 0.2);
|
| 94 |
+
}
|
| 95 |
+
|
| 96 |
+
/* Session Buttons in Sidebar */
|
| 97 |
+
.session-btn {
|
| 98 |
+
width: 100%;
|
| 99 |
+
text-align: left;
|
| 100 |
+
margin-bottom: 5px;
|
| 101 |
+
}
|
| 102 |
+
|
| 103 |
+
/* Metrics Bar - Floating "Pill" */
|
| 104 |
+
.metric-pill {
|
| 105 |
+
display: flex;
|
| 106 |
+
align-items: center;
|
| 107 |
+
justify-content: center;
|
| 108 |
+
gap: 12px;
|
| 109 |
+
background: rgba(16, 24, 39, 0.8);
|
| 110 |
+
border: 1px solid #2D3748;
|
| 111 |
+
padding: 10px 24px;
|
| 112 |
+
border-radius: 100px;
|
| 113 |
+
margin: 20px auto; /* Centered */
|
| 114 |
+
width: fit-content;
|
| 115 |
+
font-size: 0.9rem;
|
| 116 |
+
color: #94A3B8;
|
| 117 |
+
box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.3);
|
| 118 |
+
}
|
| 119 |
+
.metric-value {
|
| 120 |
+
color: #34D399;
|
| 121 |
+
font-family: 'JetBrains Mono', monospace;
|
| 122 |
+
font-weight: 600;
|
| 123 |
+
}
|
| 124 |
+
|
| 125 |
+
/* Reasoning Cards - Centered & Wide */
|
| 126 |
+
.reasoning-container {
|
| 127 |
+
margin-top: 20px;
|
| 128 |
+
background: rgba(30, 41, 59, 0.3);
|
| 129 |
+
border-radius: 12px;
|
| 130 |
+
padding: 15px;
|
| 131 |
+
border: 1px solid rgba(255,255,255,0.05);
|
| 132 |
+
}
|
| 133 |
+
.reasoning-card {
|
| 134 |
+
background: rgba(255,255,255,0.02);
|
| 135 |
+
border-left: 3px solid #3B82F6;
|
| 136 |
+
padding: 12px 16px;
|
| 137 |
+
margin-bottom: 10px;
|
| 138 |
+
border-radius: 0 8px 8px 0;
|
| 139 |
+
}
|
| 140 |
+
.reasoning-label {
|
| 141 |
+
font-weight: 600;
|
| 142 |
+
color: #E2E8F0;
|
| 143 |
+
font-size: 0.95rem;
|
| 144 |
+
margin-bottom: 4px;
|
| 145 |
+
}
|
| 146 |
+
.reasoning-text {
|
| 147 |
+
font-size: 0.85rem;
|
| 148 |
+
color: #94A3B8;
|
| 149 |
+
line-height: 1.5;
|
| 150 |
+
}
|
| 151 |
+
|
| 152 |
+
/* Input Area */
|
| 153 |
+
.stChatInputContainer {
|
| 154 |
+
padding-bottom: 2rem;
|
| 155 |
+
}
|
| 156 |
+
|
| 157 |
+
/* Slider Customization */
|
| 158 |
+
div[data-testid="stSlider"] > div {
|
| 159 |
+
max_width: 300px;
|
| 160 |
+
margin: auto;
|
| 161 |
+
}
|
| 162 |
+
|
| 163 |
+
/* CENTER IMAGES */
|
| 164 |
+
div[data-testid="stImage"] {
|
| 165 |
+
display: flex;
|
| 166 |
+
justify-content: center;
|
| 167 |
+
width: 100%;
|
| 168 |
+
}
|
| 169 |
+
div[data-testid="stImage"] > img {
|
| 170 |
+
margin: 0 auto;
|
| 171 |
+
}
|
| 172 |
+
</style>
|
| 173 |
+
""", unsafe_allow_html=True)
|
| 174 |
+
|
| 175 |
+
# --- State Management ---
|
| 176 |
+
if "model_loaded" not in st.session_state:
|
| 177 |
+
st.session_state.model_loaded = False
|
| 178 |
+
if "sessions" not in st.session_state:
|
| 179 |
+
# Structure: { session_id: { name, history, detections, image, metrics, timestamp } }
|
| 180 |
+
st.session_state.sessions = {}
|
| 181 |
+
if "active_session_id" not in st.session_state:
|
| 182 |
+
st.session_state.active_session_id = None
|
| 183 |
+
|
| 184 |
+
# Helper 1: Create a new session
|
| 185 |
+
def create_session(name="New Chat"):
|
| 186 |
+
session_id = str(uuid.uuid4())
|
| 187 |
+
st.session_state.sessions[session_id] = {
|
| 188 |
+
"name": name,
|
| 189 |
+
"history": [],
|
| 190 |
+
"detections": [],
|
| 191 |
+
"image": None,
|
| 192 |
+
"metrics": {},
|
| 193 |
+
"created_at": time.time()
|
| 194 |
+
}
|
| 195 |
+
st.session_state.active_session_id = session_id
|
| 196 |
+
return session_id
|
| 197 |
+
|
| 198 |
+
# Helper 2: Get active session data
|
| 199 |
+
def get_active_session():
|
| 200 |
+
if not st.session_state.active_session_id:
|
| 201 |
+
create_session()
|
| 202 |
+
return st.session_state.sessions[st.session_state.active_session_id]
|
| 203 |
+
|
| 204 |
+
# Ensure at least one session exists
|
| 205 |
+
if not st.session_state.sessions:
|
| 206 |
+
create_session()
|
| 207 |
+
|
| 208 |
+
current_session = get_active_session()
|
| 209 |
+
|
| 210 |
+
# --- Sidebar (Session Manager) ---
|
| 211 |
+
with st.sidebar:
|
| 212 |
+
st.markdown("### 🗂️ Sessions")
|
| 213 |
+
|
| 214 |
+
if st.button("➕ New Chat", use_container_width=True, type="primary"):
|
| 215 |
+
create_session()
|
| 216 |
+
st.rerun()
|
| 217 |
+
|
| 218 |
+
st.markdown("---")
|
| 219 |
+
|
| 220 |
+
# Sort sessions by recency
|
| 221 |
+
sorted_sessions = sorted(
|
| 222 |
+
st.session_state.sessions.items(),
|
| 223 |
+
key=lambda x: x[1]['created_at'],
|
| 224 |
+
reverse=True
|
| 225 |
+
)
|
| 226 |
+
|
| 227 |
+
for s_id, s_data in sorted_sessions:
|
| 228 |
+
# Hide empty "New Chat" sessions from the list unless active
|
| 229 |
+
if s_data['image'] is None:
|
| 230 |
+
continue
|
| 231 |
+
|
| 232 |
+
is_active = (s_id == st.session_state.active_session_id)
|
| 233 |
+
|
| 234 |
+
display_name = s_data['name']
|
| 235 |
+
icon = "📂" if is_active else "📝"
|
| 236 |
+
label = f"{icon} {display_name}"
|
| 237 |
+
|
| 238 |
+
if st.button(label, key=f"sess_{s_id}", use_container_width=True, type="secondary" if not is_active else "primary"):
|
| 239 |
+
st.session_state.active_session_id = s_id
|
| 240 |
+
st.rerun()
|
| 241 |
+
|
| 242 |
+
# --- Model Loading ---
|
| 243 |
+
if not st.session_state.model_loaded:
|
| 244 |
+
with st.spinner("Initializing AI Core..."):
|
| 245 |
+
processor, model = utils.load_model()
|
| 246 |
+
if processor and model:
|
| 247 |
+
st.session_state.model_loaded = True
|
| 248 |
+
st.session_state.processor = processor
|
| 249 |
+
st.session_state.model = model
|
| 250 |
+
st.rerun()
|
| 251 |
+
else:
|
| 252 |
+
st.error("Model Engine Failure.")
|
| 253 |
+
st.stop()
|
| 254 |
+
|
| 255 |
+
# --- Main Workspace ---
|
| 256 |
+
|
| 257 |
+
# Header
|
| 258 |
+
col_logo, col_space = st.columns([6, 1])
|
| 259 |
+
with col_logo:
|
| 260 |
+
if current_session['name'] == "New Chat":
|
| 261 |
+
st.markdown("# Annotation Assistant")
|
| 262 |
+
else:
|
| 263 |
+
st.markdown(f"# {current_session['name']}")
|
| 264 |
+
|
| 265 |
+
# Logic
|
| 266 |
+
if current_session['image'] is None:
|
| 267 |
+
# --- Upload State ---
|
| 268 |
+
st.markdown(
|
| 269 |
+
"<h3 style='text-align: center; color: #94A3B8; border: none;'>Upload an image to start this session</h3>",
|
| 270 |
+
unsafe_allow_html=True
|
| 271 |
+
)
|
| 272 |
+
|
| 273 |
+
uploaded_file = st.file_uploader(
|
| 274 |
+
"Upload Image",
|
| 275 |
+
type=["jpg", "png", "jpeg"],
|
| 276 |
+
key=f"uploader_{st.session_state.active_session_id}",
|
| 277 |
+
label_visibility="collapsed"
|
| 278 |
+
)
|
| 279 |
+
|
| 280 |
+
if uploaded_file:
|
| 281 |
+
image = Image.open(uploaded_file).convert("RGB")
|
| 282 |
+
current_session['image'] = image
|
| 283 |
+
current_session['name'] = uploaded_file.name
|
| 284 |
+
st.rerun()
|
| 285 |
+
|
| 286 |
+
else:
|
| 287 |
+
# --- Analysis State ---
|
| 288 |
+
|
| 289 |
+
# Image Controls
|
| 290 |
+
img_width = st.slider("Adjust View Size", 300, 1500, 700, 50, help="Drag to resize the image view")
|
| 291 |
+
st.markdown("<br>", unsafe_allow_html=True)
|
| 292 |
+
|
| 293 |
+
# 1. Main visual (Hero)
|
| 294 |
+
display_image = current_session['image'].copy()
|
| 295 |
+
|
| 296 |
+
if current_session['detections']:
|
| 297 |
+
display_image = utils.draw_boxes(display_image, current_session['detections'])
|
| 298 |
+
|
| 299 |
+
st.image(display_image, width=img_width)
|
| 300 |
+
|
| 301 |
+
# 2. Results Actions & Metrics
|
| 302 |
+
if current_session['detections']:
|
| 303 |
+
# Metrics Row
|
| 304 |
+
if current_session['metrics']:
|
| 305 |
+
m = current_session['metrics']
|
| 306 |
+
st.markdown(f"""
|
| 307 |
+
<div class='metric-pill'>
|
| 308 |
+
<span>Inference <span class='metric-value'>{m.get('inference_time', 0)}s</span></span>
|
| 309 |
+
<span style='color: #4B5563'>|</span>
|
| 310 |
+
<span>Total <span class='metric-value'>{m.get('total_time', 0)}s</span></span>
|
| 311 |
+
<span style='color: #4B5563'>|</span>
|
| 312 |
+
<span>Tokens <span class='metric-value'>{m.get('token_count', 0)}</span></span>
|
| 313 |
+
</div>
|
| 314 |
+
""", unsafe_allow_html=True)
|
| 315 |
+
|
| 316 |
+
# Download Row
|
| 317 |
+
c1, c2, c3 = st.columns([1, 1, 3]) # Bias to left
|
| 318 |
+
with c1:
|
| 319 |
+
# UPDATED: Pass usage metadata for Strict COCO compatibility
|
| 320 |
+
coco_json = utils.convert_to_coco(
|
| 321 |
+
current_session['detections'],
|
| 322 |
+
image_size=current_session['image'].size,
|
| 323 |
+
filename=current_session['name']
|
| 324 |
+
)
|
| 325 |
+
st.download_button("Download JSON", coco_json, "annotations.json", "application/json", use_container_width=True)
|
| 326 |
+
with c2:
|
| 327 |
+
zip_buffer = utils.create_crops_zip(current_session['image'], current_session['detections'])
|
| 328 |
+
st.download_button("Download ZIP", zip_buffer, "crops.zip", "application/zip", use_container_width=True)
|
| 329 |
+
|
| 330 |
+
# 3. Reasoning Stream (Below)
|
| 331 |
+
st.markdown("<div style='height: 20px;'></div>", unsafe_allow_html=True)
|
| 332 |
+
st.markdown("### AI Insights")
|
| 333 |
+
with st.container():
|
| 334 |
+
st.markdown("<div class='reasoning-container'>", unsafe_allow_html=True)
|
| 335 |
+
for det in current_session['detections'][::-1]:
|
| 336 |
+
label = det.get('label', 'Object')
|
| 337 |
+
reasoning = det.get('reasoning', None)
|
| 338 |
+
if not reasoning: reasoning = "Object detected based on visual features."
|
| 339 |
+
st.markdown(f"""
|
| 340 |
+
<div class='reasoning-card'>
|
| 341 |
+
<div class='reasoning-label'>{label}</div>
|
| 342 |
+
<div class='reasoning-text'>{reasoning}</div>
|
| 343 |
+
</div>
|
| 344 |
+
""", unsafe_allow_html=True)
|
| 345 |
+
st.markdown("</div>", unsafe_allow_html=True)
|
| 346 |
+
|
| 347 |
+
else:
|
| 348 |
+
# Image loaded but no detections
|
| 349 |
+
st.markdown(
|
| 350 |
+
"<div style='text-align: center; margin-top: 20px; color: #64748B; font-style: italic;'>"
|
| 351 |
+
"Waiting for instructions... Use the chat bar below."
|
| 352 |
+
"</div>",
|
| 353 |
+
unsafe_allow_html=True
|
| 354 |
+
)
|
| 355 |
+
|
| 356 |
+
# --- Floating Chat Bar ---
|
| 357 |
+
st.markdown("<br>", unsafe_allow_html=True)
|
| 358 |
+
prompt = st.chat_input("Describe objects to detect...")
|
| 359 |
+
|
| 360 |
+
if prompt:
|
| 361 |
+
if current_session['image'] is None:
|
| 362 |
+
st.error("Please upload an image first.")
|
| 363 |
+
else:
|
| 364 |
+
with st.status("Analyzing Scene...", expanded=True) as status:
|
| 365 |
+
detections, updated_history, raw_text, metrics = utils.get_bounding_boxes(
|
| 366 |
+
current_session['image'],
|
| 367 |
+
prompt,
|
| 368 |
+
current_session['history'],
|
| 369 |
+
st.session_state.processor,
|
| 370 |
+
st.session_state.model
|
| 371 |
+
)
|
| 372 |
+
|
| 373 |
+
if detections:
|
| 374 |
+
current_session['detections'] = utils.smart_merge_detections(current_session['detections'], detections)
|
| 375 |
+
current_session['history'] = updated_history
|
| 376 |
+
current_session['metrics'] = metrics
|
| 377 |
+
status.update(label="Complete", state="complete", expanded=False)
|
| 378 |
+
st.rerun()
|
| 379 |
+
else:
|
| 380 |
+
status.update(label="No matches found.", state="error", expanded=False)
|
| 381 |
+
st.toast(f"No match found.", icon="⚠️")
|
requirements.txt
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
streamlit
|
| 2 |
+
transformers
|
| 3 |
+
torch
|
| 4 |
+
accelerate
|
| 5 |
+
pillow
|
| 6 |
+
opencv-python-headless
|
| 7 |
+
pyngrok
|
| 8 |
+
numpy
|
| 9 |
+
qwen_vl_utils
|
| 10 |
+
einops
|
utils.py
ADDED
|
@@ -0,0 +1,420 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
import json
|
| 5 |
+
import time
|
| 6 |
+
import io
|
| 7 |
+
import zipfile
|
| 8 |
+
from PIL import Image, ImageDraw, ImageFont
|
| 9 |
+
from transformers import AutoProcessor, AutoModelForVision2Seq
|
| 10 |
+
import streamlit as st
|
| 11 |
+
import re
|
| 12 |
+
|
| 13 |
+
# Constants
|
| 14 |
+
MODEL_ID = "Qwen/Qwen3-VL-4B-Instruct"
|
| 15 |
+
|
| 16 |
+
@st.cache_resource
|
| 17 |
+
def load_model():
|
| 18 |
+
"""
|
| 19 |
+
Loads the Qwen-VL model and processor.
|
| 20 |
+
"""
|
| 21 |
+
print(f"Loading model: {MODEL_ID}...")
|
| 22 |
+
try:
|
| 23 |
+
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
| 24 |
+
model = AutoModelForVision2Seq.from_pretrained(
|
| 25 |
+
MODEL_ID,
|
| 26 |
+
device_map="auto",
|
| 27 |
+
trust_remote_code=True,
|
| 28 |
+
torch_dtype=torch.float16
|
| 29 |
+
)
|
| 30 |
+
except Exception as e:
|
| 31 |
+
print(f"Error loading {MODEL_ID}: {e}")
|
| 32 |
+
st.error(f"Could not load model {MODEL_ID}. Error: {e}")
|
| 33 |
+
return None, None
|
| 34 |
+
|
| 35 |
+
return processor, model
|
| 36 |
+
|
| 37 |
+
def get_bounding_boxes(image: Image.Image, prompt: str, history: list, processor, model):
|
| 38 |
+
"""
|
| 39 |
+
Generates bounding boxes based on the image, prompt, and conversation history.
|
| 40 |
+
"""
|
| 41 |
+
start_time = time.time()
|
| 42 |
+
|
| 43 |
+
if model is None or processor is None:
|
| 44 |
+
return [], history, "Model not loaded.", {}
|
| 45 |
+
|
| 46 |
+
# Construct conversation
|
| 47 |
+
messages = []
|
| 48 |
+
|
| 49 |
+
# Context
|
| 50 |
+
context_text = ""
|
| 51 |
+
if history:
|
| 52 |
+
context_text = "History:\n"
|
| 53 |
+
for msg in history:
|
| 54 |
+
role = "User" if msg['role'] == 'user' else "Assistant"
|
| 55 |
+
context_text += f"{role}: {msg['content']}\n"
|
| 56 |
+
context_text += "\n"
|
| 57 |
+
|
| 58 |
+
# Enhanced Prompt: JSON Focused With Reasoning
|
| 59 |
+
final_prompt = f"{context_text}User Request: {prompt}\n\nTask: Detect objects mentioned in the User Request.\nConstraint: Return the result ONLY as a JSON object with a key 'objects'.\nEach object in the list should have 'label', 'bbox' [x1, y1, x2, y2] (common normalized coordinates 0-1000), AND 'reasoning' (a brief string explaining why this object matches).\nExample: {{'objects': [{{'label': 'cat', 'bbox': [100, 200, 500, 600], 'reasoning': 'Detected distinct feline features and whiskers.'}}]}}\nIf no objects are found, return {{'objects': []}}."
|
| 60 |
+
|
| 61 |
+
messages = [
|
| 62 |
+
{
|
| 63 |
+
"role": "system",
|
| 64 |
+
"content": "You are a precise object detection assistant. Return JSON with 'objects' list containing 'label', 'bbox' [x1, y1, x2, y2] (common normalized coordinates 0-1000), and 'reasoning'."
|
| 65 |
+
},
|
| 66 |
+
{
|
| 67 |
+
"role": "user",
|
| 68 |
+
"content": [
|
| 69 |
+
{"type": "image", "image": image},
|
| 70 |
+
{"type": "text", "text": final_prompt}
|
| 71 |
+
]
|
| 72 |
+
}
|
| 73 |
+
]
|
| 74 |
+
|
| 75 |
+
# Process inputs
|
| 76 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 77 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
| 78 |
+
|
| 79 |
+
try:
|
| 80 |
+
inputs = processor(
|
| 81 |
+
text=[text],
|
| 82 |
+
images=image_inputs,
|
| 83 |
+
videos=video_inputs,
|
| 84 |
+
padding=True,
|
| 85 |
+
return_tensors="pt",
|
| 86 |
+
)
|
| 87 |
+
inputs = inputs.to(model.device)
|
| 88 |
+
|
| 89 |
+
# Generate (Measured)
|
| 90 |
+
generate_start = time.time()
|
| 91 |
+
generated_ids = model.generate(**inputs, max_new_tokens=512)
|
| 92 |
+
generate_end = time.time()
|
| 93 |
+
|
| 94 |
+
generated_ids_trimmed = [
|
| 95 |
+
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
| 96 |
+
]
|
| 97 |
+
output_text = processor.batch_decode(
|
| 98 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
| 99 |
+
)[0]
|
| 100 |
+
|
| 101 |
+
except Exception as e:
|
| 102 |
+
print(f"Inference Error: {e}")
|
| 103 |
+
output_text = f"Error: {e}"
|
| 104 |
+
generate_end = time.time()
|
| 105 |
+
|
| 106 |
+
# Update history
|
| 107 |
+
history.append({"role": "user", "content": prompt})
|
| 108 |
+
history.append({"role": "assistant", "content": output_text})
|
| 109 |
+
|
| 110 |
+
# Parse detections
|
| 111 |
+
detections = parse_qwen_output(output_text, image.width, image.height)
|
| 112 |
+
|
| 113 |
+
# Filter
|
| 114 |
+
filtered_detections = []
|
| 115 |
+
total_area = image.width * image.height
|
| 116 |
+
|
| 117 |
+
for det in detections:
|
| 118 |
+
x1, y1, x2, y2 = det['box']
|
| 119 |
+
box_area = (x2 - x1) * (y2 - y1)
|
| 120 |
+
coverage = box_area / total_area
|
| 121 |
+
|
| 122 |
+
is_suspicious_coverage = coverage > 0.95
|
| 123 |
+
is_whole_request = any(w in prompt.lower() for w in ["image", "picture", "photo", "background", "everything"])
|
| 124 |
+
|
| 125 |
+
if is_suspicious_coverage and not is_whole_request:
|
| 126 |
+
continue
|
| 127 |
+
|
| 128 |
+
filtered_detections.append(det)
|
| 129 |
+
|
| 130 |
+
# Metrics
|
| 131 |
+
end_time = time.time()
|
| 132 |
+
total_time = end_time - start_time
|
| 133 |
+
inference_time = generate_end - generate_start
|
| 134 |
+
|
| 135 |
+
metrics = {
|
| 136 |
+
"total_time": round(total_time, 2),
|
| 137 |
+
"inference_time": round(inference_time, 2),
|
| 138 |
+
"token_count": len(generated_ids[0]) if 'generated_ids' in locals() else 0
|
| 139 |
+
}
|
| 140 |
+
|
| 141 |
+
return filtered_detections, history, output_text, metrics
|
| 142 |
+
|
| 143 |
+
def smart_merge_detections(existing_detections, new_detections):
|
| 144 |
+
"""
|
| 145 |
+
Merges new detections with existing ones.
|
| 146 |
+
Strategy: SIMPLE OVERLAP ONLY.
|
| 147 |
+
If IoU > 0.8 -> Assume duplicate/refinement -> Replace.
|
| 148 |
+
Else -> Keep.
|
| 149 |
+
"""
|
| 150 |
+
merged_list = existing_detections.copy()
|
| 151 |
+
|
| 152 |
+
for new_det in new_detections:
|
| 153 |
+
new_box = new_det['box']
|
| 154 |
+
indices_to_remove = []
|
| 155 |
+
|
| 156 |
+
for i, old_det in enumerate(merged_list):
|
| 157 |
+
old_box = old_det['box']
|
| 158 |
+
iou = calculate_iou(new_box, old_box)
|
| 159 |
+
|
| 160 |
+
# Simple threshold check
|
| 161 |
+
if iou > 0.8:
|
| 162 |
+
indices_to_remove.append(i)
|
| 163 |
+
|
| 164 |
+
for idx in sorted(indices_to_remove, reverse=True):
|
| 165 |
+
merged_list.pop(idx)
|
| 166 |
+
|
| 167 |
+
merged_list.append(new_det)
|
| 168 |
+
|
| 169 |
+
return merged_list
|
| 170 |
+
|
| 171 |
+
def calculate_iou(boxA, boxB):
|
| 172 |
+
xA = max(boxA[0], boxB[0])
|
| 173 |
+
yA = max(boxA[1], boxB[1])
|
| 174 |
+
xB = min(boxA[2], boxB[2])
|
| 175 |
+
yB = min(boxA[3], boxB[3])
|
| 176 |
+
|
| 177 |
+
interArea = max(0, xB - xA) * max(0, yB - yA)
|
| 178 |
+
boxAArea = (boxA[2] - boxA[0]) * (boxA[3] - boxA[1])
|
| 179 |
+
boxBArea = (boxB[2] - boxB[0]) * (boxB[3] - boxB[1])
|
| 180 |
+
|
| 181 |
+
iou = interArea / float(boxAArea + boxBArea - interArea + 1e-6)
|
| 182 |
+
return iou
|
| 183 |
+
|
| 184 |
+
def parse_qwen_output(text, width, height):
|
| 185 |
+
"""
|
| 186 |
+
Parses Qwen-VL output, prioritizing JSON with reasoning.
|
| 187 |
+
"""
|
| 188 |
+
detections = []
|
| 189 |
+
|
| 190 |
+
# 1. Try JSON Parsing (Primary Strategy)
|
| 191 |
+
try:
|
| 192 |
+
match = re.search(r'\{.*\}', text, re.DOTALL)
|
| 193 |
+
if match:
|
| 194 |
+
json_str = match.group()
|
| 195 |
+
data = json.loads(json_str)
|
| 196 |
+
|
| 197 |
+
if 'objects' in data and isinstance(data['objects'], list):
|
| 198 |
+
for obj in data['objects']:
|
| 199 |
+
x1, y1, x2, y2 = obj['bbox']
|
| 200 |
+
label = obj.get('label', 'Object')
|
| 201 |
+
reasoning = obj.get('reasoning', 'No reasoning provided')
|
| 202 |
+
|
| 203 |
+
real_x1 = (x1 / 1000) * width
|
| 204 |
+
real_y1 = (y1 / 1000) * height
|
| 205 |
+
real_x2 = (x2 / 1000) * width
|
| 206 |
+
real_y2 = (y2 / 1000) * height
|
| 207 |
+
|
| 208 |
+
detections.append({
|
| 209 |
+
"label": label,
|
| 210 |
+
"box": [real_x1, real_y1, real_x2, real_y2],
|
| 211 |
+
"score": 1.0,
|
| 212 |
+
"reasoning": reasoning
|
| 213 |
+
})
|
| 214 |
+
except Exception as e:
|
| 215 |
+
print(f"JSON Parse Error: {e}")
|
| 216 |
+
pass
|
| 217 |
+
|
| 218 |
+
# 2. Fallback to Standard Tags
|
| 219 |
+
if not detections:
|
| 220 |
+
pattern_standard = r"<\|box_start\|>(\d+),(\d+),(\d+),(\d+)<\|box_end\|>(?:<\|object_start\|>(.*?)<\|object_end\|>)?"
|
| 221 |
+
matches_standard = list(re.finditer(pattern_standard, text))
|
| 222 |
+
for match in matches_standard:
|
| 223 |
+
c1, c2, c3, c4 = map(int, match.groups()[:4])
|
| 224 |
+
label = match.group(5) if match.group(5) else "Object"
|
| 225 |
+
y1 = (c1 / 1000) * height
|
| 226 |
+
x1 = (c2 / 1000) * width
|
| 227 |
+
y2 = (c3 / 1000) * height
|
| 228 |
+
x2 = (c4 / 1000) * width
|
| 229 |
+
detections.append({
|
| 230 |
+
"label": label,
|
| 231 |
+
"box": [x1, y1, x2, y2],
|
| 232 |
+
"score": 1.0,
|
| 233 |
+
"reasoning": "Legacy detection mode"
|
| 234 |
+
})
|
| 235 |
+
|
| 236 |
+
return detections
|
| 237 |
+
|
| 238 |
+
def create_crops_zip(image: Image.Image, detections: list):
|
| 239 |
+
"""
|
| 240 |
+
Creates a ZIP file containing cropped images of all detections.
|
| 241 |
+
"""
|
| 242 |
+
zip_buffer = io.BytesIO()
|
| 243 |
+
|
| 244 |
+
# Ensure distinct filenames
|
| 245 |
+
counts = {}
|
| 246 |
+
|
| 247 |
+
with zipfile.ZipFile(zip_buffer, "w", zipfile.ZIP_DEFLATED) as zip_file:
|
| 248 |
+
for i, det in enumerate(detections):
|
| 249 |
+
label = det.get('label', 'object').replace(" ", "_").lower()
|
| 250 |
+
if label not in counts:
|
| 251 |
+
counts[label] = 1
|
| 252 |
+
else:
|
| 253 |
+
counts[label] += 1
|
| 254 |
+
label = f"{label}_{counts[label]}"
|
| 255 |
+
|
| 256 |
+
x1, y1, x2, y2 = map(int, det['box'])
|
| 257 |
+
x1 = max(0, x1)
|
| 258 |
+
y1 = max(0, y1)
|
| 259 |
+
x2 = min(image.width, x2)
|
| 260 |
+
y2 = min(image.height, y2)
|
| 261 |
+
|
| 262 |
+
if x2 > x1 and y2 > y1:
|
| 263 |
+
crop = image.crop((x1, y1, x2, y2))
|
| 264 |
+
crop_buffer = io.BytesIO()
|
| 265 |
+
crop.save(crop_buffer, format="JPEG")
|
| 266 |
+
zip_file.writestr(f"{label}.jpg", crop_buffer.getvalue())
|
| 267 |
+
|
| 268 |
+
zip_buffer.seek(0)
|
| 269 |
+
return zip_buffer
|
| 270 |
+
|
| 271 |
+
def process_vision_info(messages):
|
| 272 |
+
try:
|
| 273 |
+
from qwen_vl_utils import process_vision_info
|
| 274 |
+
return process_vision_info(messages)
|
| 275 |
+
except ImportError:
|
| 276 |
+
images = []
|
| 277 |
+
for msg in messages:
|
| 278 |
+
for item in msg["content"]:
|
| 279 |
+
if item["type"] == "image":
|
| 280 |
+
images.append(item["image"])
|
| 281 |
+
return images, None
|
| 282 |
+
|
| 283 |
+
def draw_boxes(image: Image.Image, detections: list):
|
| 284 |
+
"""
|
| 285 |
+
Draws bounding boxes with dynamic font scaling.
|
| 286 |
+
"""
|
| 287 |
+
draw = ImageDraw.Draw(image)
|
| 288 |
+
|
| 289 |
+
# Dynamic Scaling (UPDATED FOR BETTER VISIBILITY)
|
| 290 |
+
min_dim = min(image.width, image.height)
|
| 291 |
+
scaled_font_size = max(20, int(min_dim * 0.035))
|
| 292 |
+
scaled_line_width = max(4, int(min_dim * 0.006))
|
| 293 |
+
|
| 294 |
+
font = None
|
| 295 |
+
try:
|
| 296 |
+
font_names = ["arial.ttf", "LiberationSans-Regular.ttf", "DejaVuSans.ttf"]
|
| 297 |
+
for fn in font_names:
|
| 298 |
+
try:
|
| 299 |
+
font = ImageFont.truetype(fn, scaled_font_size)
|
| 300 |
+
break
|
| 301 |
+
except:
|
| 302 |
+
continue
|
| 303 |
+
except:
|
| 304 |
+
pass
|
| 305 |
+
|
| 306 |
+
if font is None:
|
| 307 |
+
try:
|
| 308 |
+
font = ImageFont.load_default()
|
| 309 |
+
except:
|
| 310 |
+
pass
|
| 311 |
+
|
| 312 |
+
palette = [
|
| 313 |
+
"#FF00FF", "#00FFFF", "#FF0000", "#00FF00",
|
| 314 |
+
"#FFFF00", "#FFA500", "#800080", "#008080"
|
| 315 |
+
]
|
| 316 |
+
|
| 317 |
+
def get_color(text):
|
| 318 |
+
if not text: return palette[0]
|
| 319 |
+
idx = sum(ord(c) for c in text) % len(palette)
|
| 320 |
+
return palette[idx]
|
| 321 |
+
|
| 322 |
+
for det in detections:
|
| 323 |
+
box = det['box']
|
| 324 |
+
label = det.get('label', 'Object')
|
| 325 |
+
score_val = det.get('score', 1.0)
|
| 326 |
+
display_text = f"{label} {int(score_val*100)}%"
|
| 327 |
+
|
| 328 |
+
color = get_color(label)
|
| 329 |
+
|
| 330 |
+
x1, y1, x2, y2 = box
|
| 331 |
+
draw.rectangle([x1, y1, x2, y2], outline=color, width=scaled_line_width)
|
| 332 |
+
|
| 333 |
+
# Text box
|
| 334 |
+
if font:
|
| 335 |
+
text_bbox = draw.textbbox((x1, y1), display_text, font=font)
|
| 336 |
+
text_width = text_bbox[2] - text_bbox[0]
|
| 337 |
+
text_height = text_bbox[3] - text_bbox[1]
|
| 338 |
+
|
| 339 |
+
label_y = y1 - text_height - (scaled_line_width * 2)
|
| 340 |
+
if label_y < 0: label_y = y1
|
| 341 |
+
|
| 342 |
+
draw.rectangle(
|
| 343 |
+
[x1, label_y, x1 + text_width + (scaled_line_width * 4), label_y + text_height + (scaled_line_width * 2)],
|
| 344 |
+
fill=color
|
| 345 |
+
)
|
| 346 |
+
draw.text((x1 + (scaled_line_width), label_y), display_text, fill="black", font=font)
|
| 347 |
+
|
| 348 |
+
return image
|
| 349 |
+
|
| 350 |
+
def convert_to_coco(detections, image_size=(1000, 1000), filename="image.jpg"):
|
| 351 |
+
"""
|
| 352 |
+
Converts detections to full Standard COCO JSON format.
|
| 353 |
+
"""
|
| 354 |
+
width, height = image_size
|
| 355 |
+
|
| 356 |
+
# 1. Info
|
| 357 |
+
info = {
|
| 358 |
+
"year": 2025,
|
| 359 |
+
"version": "1.0",
|
| 360 |
+
"description": "Generated by Annotation Assistant (Qwen-VL)",
|
| 361 |
+
"date_created": time.strftime("%Y-%m-%d")
|
| 362 |
+
}
|
| 363 |
+
|
| 364 |
+
# 2. Images
|
| 365 |
+
images = [{
|
| 366 |
+
"id": 1,
|
| 367 |
+
"width": width,
|
| 368 |
+
"height": height,
|
| 369 |
+
"file_name": filename,
|
| 370 |
+
"license": 0,
|
| 371 |
+
"flickr_url": "",
|
| 372 |
+
"coco_url": "",
|
| 373 |
+
"date_captured": 0
|
| 374 |
+
}]
|
| 375 |
+
|
| 376 |
+
# 3. Categories & Annotations
|
| 377 |
+
categories = []
|
| 378 |
+
category_map = {}
|
| 379 |
+
annotations = []
|
| 380 |
+
cat_id_counter = 1
|
| 381 |
+
|
| 382 |
+
for i, det in enumerate(detections):
|
| 383 |
+
label = det.get('label', 'object')
|
| 384 |
+
|
| 385 |
+
# Manage Categories
|
| 386 |
+
if label not in category_map:
|
| 387 |
+
category_map[label] = cat_id_counter
|
| 388 |
+
categories.append({
|
| 389 |
+
"id": cat_id_counter,
|
| 390 |
+
"name": label,
|
| 391 |
+
"supercategory": "object"
|
| 392 |
+
})
|
| 393 |
+
cat_id_counter += 1
|
| 394 |
+
|
| 395 |
+
x1, y1, x2, y2 = det['box']
|
| 396 |
+
w = x2 - x1
|
| 397 |
+
h = y2 - y1
|
| 398 |
+
|
| 399 |
+
ann = {
|
| 400 |
+
"id": i + 1,
|
| 401 |
+
"image_id": 1,
|
| 402 |
+
"category_id": category_map[label],
|
| 403 |
+
"bbox": [round(x1, 2), round(y1, 2), round(w, 2), round(h, 2)],
|
| 404 |
+
"area": round(w * h, 2),
|
| 405 |
+
"iscrowd": 0,
|
| 406 |
+
"attributes": {
|
| 407 |
+
"reasoning": det.get('reasoning', '')
|
| 408 |
+
}
|
| 409 |
+
}
|
| 410 |
+
annotations.append(ann)
|
| 411 |
+
|
| 412 |
+
coco_output = {
|
| 413 |
+
"info": info,
|
| 414 |
+
"images": images,
|
| 415 |
+
"annotations": annotations,
|
| 416 |
+
"categories": categories,
|
| 417 |
+
"licenses": []
|
| 418 |
+
}
|
| 419 |
+
|
| 420 |
+
return json.dumps(coco_output, indent=2)
|