Spaces:
Build error
Build error
Initial commit: FastAPI + Vision + LLM integration
Browse files- Dockerfile +9 -0
- app/__init__.py +0 -0
- app/main.py +22 -0
- app/pipeline.py +62 -0
- app/requirements.txt +11 -0
Dockerfile
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM python:3.10-slim
|
| 2 |
+
|
| 3 |
+
WORKDIR /app
|
| 4 |
+
COPY ./app /app
|
| 5 |
+
|
| 6 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
| 7 |
+
|
| 8 |
+
EXPOSE 7860
|
| 9 |
+
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860"]
|
app/__init__.py
ADDED
|
File without changes
|
app/main.py
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI, UploadFile, File, Form
|
| 2 |
+
from fastapi.responses import JSONResponse
|
| 3 |
+
from app.pipeline import plant_intelligence_pipeline
|
| 4 |
+
|
| 5 |
+
app = FastAPI(
|
| 6 |
+
title=" Plant Intelligence AI",
|
| 7 |
+
description="Hybrid Plant Identifier + Reasoning Assistant",
|
| 8 |
+
version="1.0.0",
|
| 9 |
+
)
|
| 10 |
+
|
| 11 |
+
@app.get("/")
|
| 12 |
+
def home():
|
| 13 |
+
return {"message": "Welcome to the Plant Intelligence AI "}
|
| 14 |
+
|
| 15 |
+
@app.post("/analyze")
|
| 16 |
+
async def analyze(file: UploadFile = File(...), query: str = Form("")):
|
| 17 |
+
try:
|
| 18 |
+
image_bytes = await file.read()
|
| 19 |
+
result = plant_intelligence_pipeline(image_bytes, user_query=query)
|
| 20 |
+
return JSONResponse(result)
|
| 21 |
+
except Exception as e:
|
| 22 |
+
return JSONResponse({"error": str(e)}, status_code=500)
|
app/pipeline.py
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import (
|
| 2 |
+
AutoModelForImageClassification,
|
| 3 |
+
AutoProcessor,
|
| 4 |
+
AutoModelForCausalLM,
|
| 5 |
+
AutoTokenizer
|
| 6 |
+
)
|
| 7 |
+
from PIL import Image
|
| 8 |
+
import torch
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
VISION_MODEL_NAME = "drrobot9/plant-super-identification-vit-finetuned"
|
| 13 |
+
TEXT_MODEL_NAME = "Qwen/Qwen3-4B-Instruct-2507"
|
| 14 |
+
|
| 15 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 16 |
+
|
| 17 |
+
# Load vision model
|
| 18 |
+
vision_model = AutoModelForImageClassification.from_pretrained(VISION_MODEL_NAME).to(device)
|
| 19 |
+
vision_processor = AutoProcessor.from_pretrained(VISION_MODEL_NAME)
|
| 20 |
+
|
| 21 |
+
# Load text model
|
| 22 |
+
text_model = AutoModelForCausalLM.from_pretrained(TEXT_MODEL_NAME, device_map="auto", torch_dtype=torch.float16)
|
| 23 |
+
tokenizer = AutoTokenizer.from_pretrained(TEXT_MODEL_NAME)
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def identify_plant(image_bytes: bytes):
|
| 27 |
+
"""Classify plant image and return label + confidence."""
|
| 28 |
+
image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
|
| 29 |
+
inputs = vision_processor(images=image, return_tensors="pt").to(device)
|
| 30 |
+
outputs = vision_model(**inputs)
|
| 31 |
+
probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
| 32 |
+
conf, pred_idx = torch.max(probs, dim=1)
|
| 33 |
+
label = vision_model.config.id2label[pred_idx.item()]
|
| 34 |
+
return label, float(conf.item())
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def explain_plant(plant_name: str, confidence: float, extra_context: str = ""):
|
| 38 |
+
"""Use Qwen to explain the plant in natural language."""
|
| 39 |
+
prompt = f"""
|
| 40 |
+
You are a knowledgeable botanist assistant.
|
| 41 |
+
The identified plant is **{plant_name}** (confidence {confidence:.2f}).
|
| 42 |
+
|
| 43 |
+
Provide detailed information about:
|
| 44 |
+
- Scientific name
|
| 45 |
+
- Origin and climate preferences
|
| 46 |
+
- Watering and sunlight needs
|
| 47 |
+
- Growth conditions
|
| 48 |
+
- Medicinal or cultural uses
|
| 49 |
+
- built by kelvin jackson when asked
|
| 50 |
+
- you know all plants in this world
|
| 51 |
+
{extra_context}
|
| 52 |
+
"""
|
| 53 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(text_model.device)
|
| 54 |
+
output = text_model.generate(**inputs, max_new_tokens=500, temperature=0.7, top_p=0.9)
|
| 55 |
+
return tokenizer.decode(output[0], skip_special_tokens=True)
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
def plant_intelligence_pipeline(image_bytes: bytes, user_query: str = ""):
|
| 59 |
+
"""Full hybrid pipeline."""
|
| 60 |
+
name, conf = identify_plant(image_bytes)
|
| 61 |
+
description = explain_plant(name, conf, user_query)
|
| 62 |
+
return {"plant": name, "confidence": conf, "description": description}
|
app/requirements.txt
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
fastapi
|
| 2 |
+
uvicorn
|
| 3 |
+
transformers
|
| 4 |
+
torch
|
| 5 |
+
pillow
|
| 6 |
+
huggingface-hub
|
| 7 |
+
accelerate
|
| 8 |
+
einops
|
| 9 |
+
tiktoken
|
| 10 |
+
sentencepiece
|
| 11 |
+
|