emsesc commited on
Commit
03b42f1
·
1 Parent(s): b4d92e4

add modality

Browse files
Files changed (1) hide show
  1. graphs/leaderboard.py +5 -2
graphs/leaderboard.py CHANGED
@@ -40,7 +40,7 @@ def create_leaderboard(filtered_df, country_df, developer_df, model_df, start_ti
40
  ).drop(columns=["metric"])
41
 
42
  model_df = model_df.merge(
43
- filtered_df[["country", "author", "downloads", "org_or_user", "model"]].drop_duplicates(subset=["model"]),
44
  left_on="metric", right_on="model", how="left"
45
  ).drop(columns=["metric"])
46
 
@@ -71,7 +71,7 @@ def create_leaderboard(filtered_df, country_df, developer_df, model_df, start_ti
71
  top["% of total"] = top["Total Value"] / total_value * 100 if total_value else 0
72
 
73
  # All relevant metadata columns
74
- meta_cols = ["country", "author", "downloads", "org_or_user"]
75
  # Collect all metadata per top n for each category (country, author, model)
76
  meta_map = {}
77
  for name in top["Name"]:
@@ -104,6 +104,9 @@ def create_leaderboard(filtered_df, country_df, developer_df, model_df, start_ti
104
  for d in meta.get("downloads", []):
105
  if pd.notna(d): # Check if d is not NaN
106
  chips.append(("⬇️", f"{int(d):,}"))
 
 
 
107
  return chips
108
 
109
  # Apply metadata builder to top dataframe
 
40
  ).drop(columns=["metric"])
41
 
42
  model_df = model_df.merge(
43
+ filtered_df[["country", "author", "downloads", "org_or_user", "model", "merged_modality"]].drop_duplicates(subset=["model"]),
44
  left_on="metric", right_on="model", how="left"
45
  ).drop(columns=["metric"])
46
 
 
71
  top["% of total"] = top["Total Value"] / total_value * 100 if total_value else 0
72
 
73
  # All relevant metadata columns
74
+ meta_cols = ["country", "author", "downloads", "org_or_user", "merged_modality"]
75
  # Collect all metadata per top n for each category (country, author, model)
76
  meta_map = {}
77
  for name in top["Name"]:
 
104
  for d in meta.get("downloads", []):
105
  if pd.notna(d): # Check if d is not NaN
106
  chips.append(("⬇️", f"{int(d):,}"))
107
+ # Modality
108
+ for m in meta.get("merged_modality", []):
109
+ chips.append(("", m))
110
  return chips
111
 
112
  # Apply metadata builder to top dataframe