Upload 4 files
Browse files- README.md +82 -14
- app.py +185 -0
- packages.txt +8 -0
- requirements.txt +11 -0
README.md
CHANGED
|
@@ -1,14 +1,82 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# 🏥 Medical Image Analysis Tool
|
| 2 |
+
|
| 3 |
+
An AI-powered medical image analysis application using advanced detection models and large language models for medical image interpretation.
|
| 4 |
+
|
| 5 |
+
## Features
|
| 6 |
+
|
| 7 |
+
- **Advanced Object Detection**: Uses RF-DETR (Real-time Fine-grained Detection Transformer) for precise object detection
|
| 8 |
+
- **Medical AI Analysis**: Integrates MedGemma, a specialized medical vision-language model
|
| 9 |
+
- **Interactive Interface**: Built with Gradio for easy web-based interaction
|
| 10 |
+
- **Configurable Thresholds**: Adjustable confidence thresholds for detection sensitivity
|
| 11 |
+
- **GPU Acceleration**: Optimized for GPU usage when available
|
| 12 |
+
|
| 13 |
+
## Models Used
|
| 14 |
+
|
| 15 |
+
- **RF-DETR Medium**: State-of-the-art object detection model
|
| 16 |
+
- **MedGemma 4B**: Medical-specialized vision-language model for analysis and descriptions
|
| 17 |
+
|
| 18 |
+
## Usage
|
| 19 |
+
|
| 20 |
+
1. **Upload Image**: Click on the image upload area or drag and drop a medical image
|
| 21 |
+
2. **Adjust Settings**: Use the confidence threshold slider to control detection sensitivity
|
| 22 |
+
3. **Analyze**: Click "Analyze Image" to run the AI analysis
|
| 23 |
+
4. **View Results**: See the annotated image with detected objects and AI-generated descriptions
|
| 24 |
+
|
| 25 |
+
## Installation & Setup
|
| 26 |
+
|
| 27 |
+
This application is designed to run on Hugging Face Spaces. The following files are required:
|
| 28 |
+
|
| 29 |
+
- `app.py` - Main application file
|
| 30 |
+
- `requirements.txt` - Python dependencies
|
| 31 |
+
- `packages.txt` - System packages
|
| 32 |
+
- Model files in the `models/` directory
|
| 33 |
+
|
| 34 |
+
## Model Files Structure
|
| 35 |
+
|
| 36 |
+
The application expects the following model files:
|
| 37 |
+
|
| 38 |
+
```
|
| 39 |
+
models/
|
| 40 |
+
├── medgemma-4b-it/ # MedGemma model files
|
| 41 |
+
│ ├── config.json
|
| 42 |
+
│ ├── tokenizer.json
|
| 43 |
+
│ ├── model-00001-of-00002.safetensors
|
| 44 |
+
│ └── model-00002-of-00002.safetensors
|
| 45 |
+
└── rf-detr-medium.pth # RF-DETR model weights
|
| 46 |
+
```
|
| 47 |
+
|
| 48 |
+
## Technical Details
|
| 49 |
+
|
| 50 |
+
- **Framework**: PyTorch + Transformers
|
| 51 |
+
- **Interface**: Gradio
|
| 52 |
+
- **Computer Vision**: OpenCV, PIL, Supervision
|
| 53 |
+
- **Hardware**: Optimized for both CPU and GPU inference
|
| 54 |
+
|
| 55 |
+
## Performance Tips
|
| 56 |
+
|
| 57 |
+
- Higher confidence thresholds reduce false positives but may miss subtle findings
|
| 58 |
+
- The application automatically uses GPU acceleration when available
|
| 59 |
+
- Model loading happens on first use and is cached for subsequent analyses
|
| 60 |
+
|
| 61 |
+
## Limitations
|
| 62 |
+
|
| 63 |
+
- Requires significant computational resources for optimal performance
|
| 64 |
+
- Best suited for medical imaging applications
|
| 65 |
+
- Results should be verified by qualified medical professionals
|
| 66 |
+
|
| 67 |
+
## Development
|
| 68 |
+
|
| 69 |
+
To run locally:
|
| 70 |
+
|
| 71 |
+
```bash
|
| 72 |
+
pip install -r requirements.txt
|
| 73 |
+
python app.py
|
| 74 |
+
```
|
| 75 |
+
|
| 76 |
+
## License
|
| 77 |
+
|
| 78 |
+
This project is for research and educational purposes. Medical applications should be developed and validated according to appropriate regulatory standards.
|
| 79 |
+
|
| 80 |
+
## Support
|
| 81 |
+
|
| 82 |
+
For issues or questions, please refer to the Hugging Face Space documentation or create an issue in the project repository.
|
app.py
ADDED
|
@@ -0,0 +1,185 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import gc
|
| 3 |
+
import json
|
| 4 |
+
import time
|
| 5 |
+
import warnings
|
| 6 |
+
from typing import Dict, List, Optional, Tuple, Any
|
| 7 |
+
import traceback
|
| 8 |
+
|
| 9 |
+
import torch
|
| 10 |
+
import cv2
|
| 11 |
+
import numpy as np
|
| 12 |
+
from PIL import Image
|
| 13 |
+
import gradio as gr
|
| 14 |
+
|
| 15 |
+
# Import ML libraries
|
| 16 |
+
try:
|
| 17 |
+
import supervision as sv
|
| 18 |
+
from transformers import AutoModelForImageTextToText, AutoProcessor
|
| 19 |
+
except ImportError as e:
|
| 20 |
+
print(f"Warning: Missing dependencies: {e}")
|
| 21 |
+
|
| 22 |
+
# Suppress warnings
|
| 23 |
+
warnings.filterwarnings("ignore")
|
| 24 |
+
|
| 25 |
+
# Model paths - adjust these for your Space
|
| 26 |
+
MODEL_DIR = "models"
|
| 27 |
+
RESULTS_DIR = "results"
|
| 28 |
+
CACHE_DIR = os.path.join(MODEL_DIR, "hf_cache")
|
| 29 |
+
|
| 30 |
+
class ModelManager:
|
| 31 |
+
def __init__(self):
|
| 32 |
+
self.detector = None
|
| 33 |
+
self.processor = None
|
| 34 |
+
self.llm_model = None
|
| 35 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 36 |
+
|
| 37 |
+
def load_models(self):
|
| 38 |
+
"""Load the detection and LLM models"""
|
| 39 |
+
try:
|
| 40 |
+
print(f"Loading models on device: {self.device}")
|
| 41 |
+
|
| 42 |
+
# Load RF-DETR detector
|
| 43 |
+
print("Loading RF-DETR detector...")
|
| 44 |
+
self.detector = torch.load("rf-detr-medium.pth", map_location=self.device)
|
| 45 |
+
self.detector.eval()
|
| 46 |
+
|
| 47 |
+
# Load MedGemma processor and model
|
| 48 |
+
print("Loading MedGemma model...")
|
| 49 |
+
processor_path = os.path.join(MODEL_DIR, "medgemma-4b-it")
|
| 50 |
+
if os.path.exists(processor_path):
|
| 51 |
+
self.processor = AutoProcessor.from_pretrained(processor_path)
|
| 52 |
+
self.llm_model = AutoModelForImageTextToText.from_pretrained(
|
| 53 |
+
processor_path,
|
| 54 |
+
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32,
|
| 55 |
+
device_map="auto" if self.device == "cuda" else None
|
| 56 |
+
)
|
| 57 |
+
else:
|
| 58 |
+
print("Warning: MedGemma model not found locally, using basic detection only")
|
| 59 |
+
|
| 60 |
+
except Exception as e:
|
| 61 |
+
print(f"Error loading models: {e}")
|
| 62 |
+
self.detector = None
|
| 63 |
+
self.processor = None
|
| 64 |
+
self.llm_model = None
|
| 65 |
+
|
| 66 |
+
def detect_objects(self, image: Image.Image, threshold: float = 0.7) -> Tuple[Image.Image, str]:
|
| 67 |
+
"""Run object detection on the image"""
|
| 68 |
+
if self.detector is None:
|
| 69 |
+
return image, "Error: Detector not loaded"
|
| 70 |
+
|
| 71 |
+
try:
|
| 72 |
+
# Convert PIL to numpy
|
| 73 |
+
image_np = np.array(image)
|
| 74 |
+
|
| 75 |
+
# Run detection (simplified - adjust based on your RF-DETR implementation)
|
| 76 |
+
with torch.no_grad():
|
| 77 |
+
# This is a placeholder - you'll need to adapt based on your RF-DETR usage
|
| 78 |
+
detections = self.detector(image_np, threshold=threshold)
|
| 79 |
+
|
| 80 |
+
# Annotate image
|
| 81 |
+
annotated_image = self._annotate_image(image_np, detections)
|
| 82 |
+
|
| 83 |
+
# Generate description
|
| 84 |
+
description = self._generate_description(annotated_image, detections)
|
| 85 |
+
|
| 86 |
+
return Image.fromarray(annotated_image), description
|
| 87 |
+
|
| 88 |
+
except Exception as e:
|
| 89 |
+
return image, f"Error during detection: {str(e)}"
|
| 90 |
+
|
| 91 |
+
def _annotate_image(self, image: np.ndarray, detections) -> np.ndarray:
|
| 92 |
+
"""Annotate image with detections"""
|
| 93 |
+
# Placeholder annotation - adapt based on your detection format
|
| 94 |
+
annotated = image.copy()
|
| 95 |
+
|
| 96 |
+
# Add detection boxes (adjust based on your detection format)
|
| 97 |
+
if hasattr(detections, 'boxes') and len(detections.boxes) > 0:
|
| 98 |
+
for box in detections.boxes:
|
| 99 |
+
x1, y1, x2, y2 = box.cpu().numpy().astype(int)
|
| 100 |
+
cv2.rectangle(annotated, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
| 101 |
+
|
| 102 |
+
return annotated
|
| 103 |
+
|
| 104 |
+
def _generate_description(self, image: np.ndarray, detections) -> str:
|
| 105 |
+
"""Generate text description using LLM"""
|
| 106 |
+
if self.processor is None or self.llm_model is None:
|
| 107 |
+
return "Basic detection completed (LLM not available)"
|
| 108 |
+
|
| 109 |
+
try:
|
| 110 |
+
# Prepare image for LLM
|
| 111 |
+
pil_image = Image.fromarray(image)
|
| 112 |
+
|
| 113 |
+
# Create prompt for medical analysis
|
| 114 |
+
prompt = "Analyze this medical image and describe any findings related to larynx granuloma or other abnormalities."
|
| 115 |
+
|
| 116 |
+
# Process image and text
|
| 117 |
+
inputs = self.processor(text=prompt, images=pil_image, return_tensors="pt")
|
| 118 |
+
|
| 119 |
+
if self.device == "cuda":
|
| 120 |
+
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
| 121 |
+
|
| 122 |
+
# Generate response
|
| 123 |
+
with torch.no_grad():
|
| 124 |
+
outputs = self.llm_model.generate(
|
| 125 |
+
**inputs,
|
| 126 |
+
max_new_tokens=200,
|
| 127 |
+
temperature=0.2,
|
| 128 |
+
do_sample=True
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
# Decode response
|
| 132 |
+
response = self.processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
| 133 |
+
return response.strip()
|
| 134 |
+
|
| 135 |
+
except Exception as e:
|
| 136 |
+
return f"LLM analysis failed: {str(e)}"
|
| 137 |
+
|
| 138 |
+
# Global model manager
|
| 139 |
+
model_manager = ModelManager()
|
| 140 |
+
|
| 141 |
+
def analyze_image(image: Image.Image, threshold: float = 0.7, use_llm: bool = True) -> Tuple[Image.Image, str]:
|
| 142 |
+
"""Main function to analyze uploaded image"""
|
| 143 |
+
if model_manager.detector is None:
|
| 144 |
+
model_manager.load_models()
|
| 145 |
+
|
| 146 |
+
if model_manager.detector is None:
|
| 147 |
+
return image, "Error: Could not load models. Please check the model files."
|
| 148 |
+
|
| 149 |
+
return model_manager.detect_objects(image, threshold)
|
| 150 |
+
|
| 151 |
+
# Create Gradio interface
|
| 152 |
+
with gr.Blocks(title="Medical Image Analysis") as demo:
|
| 153 |
+
gr.Markdown(
|
| 154 |
+
"# 🏥 Medical Image Analysis Tool\n\n"
|
| 155 |
+
"Upload a medical image for AI-powered analysis using advanced detection models."
|
| 156 |
+
)
|
| 157 |
+
|
| 158 |
+
with gr.Row():
|
| 159 |
+
with gr.Column():
|
| 160 |
+
input_image = gr.Image(type="pil", label="Upload Medical Image")
|
| 161 |
+
threshold_slider = gr.Slider(
|
| 162 |
+
0.1, 1.0, value=0.7, step=0.05,
|
| 163 |
+
label="Detection Threshold",
|
| 164 |
+
info="Higher values = fewer but more confident detections"
|
| 165 |
+
)
|
| 166 |
+
analyze_btn = gr.Button("Analyze Image", variant="primary")
|
| 167 |
+
|
| 168 |
+
with gr.Column():
|
| 169 |
+
output_image = gr.Image(type="pil", label="Analysis Results")
|
| 170 |
+
description = gr.Markdown(label="AI Analysis", value="Upload an image to begin analysis")
|
| 171 |
+
|
| 172 |
+
analyze_btn.click(
|
| 173 |
+
analyze_image,
|
| 174 |
+
inputs=[input_image, threshold_slider],
|
| 175 |
+
outputs=[output_image, description]
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
input_image.change(
|
| 179 |
+
analyze_image,
|
| 180 |
+
inputs=[input_image, threshold_slider],
|
| 181 |
+
outputs=[output_image, description]
|
| 182 |
+
)
|
| 183 |
+
|
| 184 |
+
if __name__ == "__main__":
|
| 185 |
+
demo.launch()
|
packages.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
libgl1-mesa-glx
|
| 2 |
+
libglib2.0-0
|
| 3 |
+
libsm6
|
| 4 |
+
libxext6
|
| 5 |
+
libxrender-dev
|
| 6 |
+
libgomp1
|
| 7 |
+
ffmpeg
|
| 8 |
+
build-essential
|
requirements.txt
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch>=2.0.0
|
| 2 |
+
transformers>=4.30.0
|
| 3 |
+
gradio>=4.0.0
|
| 4 |
+
pillow>=10.0.0
|
| 5 |
+
opencv-python>=4.8.0
|
| 6 |
+
supervision>=0.18.0
|
| 7 |
+
psutil>=5.9.0
|
| 8 |
+
numpy>=1.24.0
|
| 9 |
+
imageio>=2.31.0
|
| 10 |
+
imageio-ffmpeg>=0.4.8
|
| 11 |
+
requests>=2.31.0
|