Spaces:
Paused
Paused
Update api/ltx_server_refactored.py
Browse files- api/ltx_server_refactored.py +41 -25
api/ltx_server_refactored.py
CHANGED
|
@@ -228,7 +228,7 @@ class VideoService:
|
|
| 228 |
conditioning_items.append(ConditioningItem(tensor, safe_frame, float(weight)))
|
| 229 |
return conditioning_items
|
| 230 |
|
| 231 |
-
def
|
| 232 |
used_seed = random.randint(0, 2**32 - 1) if seed is None else int(seed)
|
| 233 |
seed_everething(used_seed)
|
| 234 |
FPS = 24.0
|
|
@@ -267,13 +267,17 @@ class VideoService:
|
|
| 267 |
torch.cuda.ipc_collect()
|
| 268 |
self.finalize(keep_paths=[])
|
| 269 |
|
|
|
|
|
|
|
|
|
|
| 270 |
def _generate_single_chunk_low(self, prompt, negative_prompt, height, width, num_frames, guidance_scale, seed, initial_latent_condition=None, image_conditions=None, ltx_configs_override=None):
|
| 271 |
"""
|
| 272 |
[NÓ DE GERAÇÃO]
|
| 273 |
Gera um ÚNICO chunk de latentes brutos. Esta é a unidade de trabalho fundamental.
|
| 274 |
"""
|
| 275 |
-
# (Esta função auxiliar permanece a mesma da nossa última versão, com a lógica de override)
|
| 276 |
print("\n" + "-"*20 + " INÍCIO: _generate_single_chunk_low " + "-"*20)
|
|
|
|
|
|
|
| 277 |
height_padded = ((height - 1) // 8 + 1) * 8
|
| 278 |
width_padded = ((width - 1) // 8 + 1) * 8
|
| 279 |
generator = torch.Generator(device=self.device).manual_seed(seed)
|
|
@@ -286,6 +290,7 @@ class VideoService:
|
|
| 286 |
x_height = int(height_padded * downscale_factor)
|
| 287 |
downscaled_height = x_height - (x_height % vae_scale_factor)
|
| 288 |
|
|
|
|
| 289 |
all_conditions = []
|
| 290 |
if image_conditions: all_conditions.extend(image_conditions)
|
| 291 |
if initial_latent_condition: all_conditions.append(initial_latent_condition)
|
|
@@ -294,12 +299,23 @@ class VideoService:
|
|
| 294 |
|
| 295 |
if ltx_configs_override:
|
| 296 |
print("[DEBUG] Sobrepondo configurações do LTX com valores da UI...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 297 |
if "first_pass_num_inference_steps" in ltx_configs_override:
|
| 298 |
first_pass_config["num_inference_steps"] = ltx_configs_override["first_pass_num_inference_steps"]
|
| 299 |
-
#if "first_pass_guidance_scale" in ltx_configs_override:
|
| 300 |
-
# max_val = max(first_pass_config.get("guidance_scale", [1]))
|
| 301 |
-
# new_max_val = ltx_configs_override["first_pass_guidance_scale"]
|
| 302 |
-
# first_pass_config["guidance_scale"] = [new_max_val if x==max_val else x for x in first_pass_config["guidance_scale"]]
|
| 303 |
|
| 304 |
first_pass_kwargs = {
|
| 305 |
"prompt": prompt, "negative_prompt": negative_prompt, "height": downscaled_height, "width": downscaled_width,
|
|
@@ -307,10 +323,8 @@ class VideoService:
|
|
| 307 |
"conditioning_items": all_conditions if all_conditions else None,
|
| 308 |
**first_pass_config
|
| 309 |
}
|
| 310 |
-
|
| 311 |
-
#
|
| 312 |
-
# del first_pass_kwargs['guidance_scale']
|
| 313 |
-
|
| 314 |
with torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype, enabled=self.device.type == 'cuda'):
|
| 315 |
latents_bruto = self.pipeline(**first_pass_kwargs).images
|
| 316 |
log_tensor_info(latents_bruto, f"Latente Bruto Gerado para: '{prompt[:40]}...'")
|
|
@@ -318,6 +332,9 @@ class VideoService:
|
|
| 318 |
print("-" * 20 + " FIM: _generate_single_chunk_low " + "-"*20)
|
| 319 |
return latents_bruto
|
| 320 |
|
|
|
|
|
|
|
|
|
|
| 321 |
def generate_narrative_low(self, prompt: str, negative_prompt, height, width, duration, guidance_scale, seed, initial_image_conditions=None, overlap_frames: int = 8, ltx_configs_override: dict = None):
|
| 322 |
"""
|
| 323 |
[ORQUESTRADOR NARRATIVO]
|
|
@@ -377,9 +394,7 @@ class VideoService:
|
|
| 377 |
|
| 378 |
latentes_bruto = self._generate_single_chunk_low(
|
| 379 |
prompt=chunk_prompt, negative_prompt=negative_prompt, height=height, width=width,
|
| 380 |
-
num_frames=num_frames_para_gerar,
|
| 381 |
-
#guidance_scale=guidance_scale,
|
| 382 |
-
seed=used_seed + i,
|
| 383 |
initial_latent_condition=condition_item_latent_overlap, image_conditions=current_image_conditions,
|
| 384 |
ltx_configs_override=ltx_configs_override
|
| 385 |
)
|
|
@@ -404,12 +419,15 @@ class VideoService:
|
|
| 404 |
torch.save(final_latents.cpu(), tensor_path)
|
| 405 |
|
| 406 |
with torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype, enabled=self.device.type == 'cuda'):
|
| 407 |
-
pixel_tensor = vae_manager_singleton.decode(final_latents, decode_timestep=float(
|
| 408 |
video_path = self._save_and_log_video(pixel_tensor, "narrative_video", FPS, temp_dir, results_dir, used_seed)
|
| 409 |
|
| 410 |
self.finalize(keep_paths=[video_path, tensor_path])
|
| 411 |
return video_path, tensor_path, used_seed
|
| 412 |
-
|
|
|
|
|
|
|
|
|
|
| 413 |
def generate_single_low(self, prompt: str, negative_prompt, height, width, duration, guidance_scale, seed, initial_image_conditions=None, ltx_configs_override: dict = None):
|
| 414 |
"""
|
| 415 |
[ORQUESTRADOR SIMPLES]
|
|
@@ -430,14 +448,9 @@ class VideoService:
|
|
| 430 |
|
| 431 |
# Chama a função de geração de chunk único para fazer todo o trabalho
|
| 432 |
final_latents = self._generate_single_chunk_low(
|
| 433 |
-
prompt=prompt,
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
num_frames=total_actual_frames,
|
| 437 |
-
#guidance_scale=guidance_scale,
|
| 438 |
-
seed=used_seed,
|
| 439 |
-
image_conditions=initial_image_conditions,
|
| 440 |
-
ltx_configs_override=ltx_configs_override
|
| 441 |
)
|
| 442 |
|
| 443 |
print("\n--- Finalizando Geração Simples: Salvando e decodificando ---")
|
|
@@ -447,12 +460,15 @@ class VideoService:
|
|
| 447 |
torch.save(final_latents.cpu(), tensor_path)
|
| 448 |
|
| 449 |
with torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype, enabled=self.device.type == 'cuda'):
|
| 450 |
-
pixel_tensor = vae_manager_singleton.decode(final_latents, decode_timestep=float(
|
| 451 |
video_path = self._save_and_log_video(pixel_tensor, "single_video", FPS, temp_dir, results_dir, used_seed)
|
| 452 |
|
| 453 |
self.finalize(keep_paths=[video_path, tensor_path])
|
| 454 |
return video_path, tensor_path, used_seed
|
| 455 |
-
|
|
|
|
|
|
|
|
|
|
| 456 |
def generate_upscale_denoise(self, latents_path, prompt, negative_prompt, guidance_scale, seed):
|
| 457 |
used_seed = random.randint(0, 2**32 - 1) if seed is None else int(seed)
|
| 458 |
seed_everething(used_seed)
|
|
|
|
| 228 |
conditioning_items.append(ConditioningItem(tensor, safe_frame, float(weight)))
|
| 229 |
return conditioning_items
|
| 230 |
|
| 231 |
+
def generate_low(self, prompt, negative_prompt, height, width, duration, guidance_scale, seed, conditioning_items=None):
|
| 232 |
used_seed = random.randint(0, 2**32 - 1) if seed is None else int(seed)
|
| 233 |
seed_everething(used_seed)
|
| 234 |
FPS = 24.0
|
|
|
|
| 267 |
torch.cuda.ipc_collect()
|
| 268 |
self.finalize(keep_paths=[])
|
| 269 |
|
| 270 |
+
# ==============================================================================
|
| 271 |
+
# --- FUNÇÃO #1: GERADOR DE CHUNK ÚNICO (AUXILIAR INTERNA) ---
|
| 272 |
+
# ==============================================================================
|
| 273 |
def _generate_single_chunk_low(self, prompt, negative_prompt, height, width, num_frames, guidance_scale, seed, initial_latent_condition=None, image_conditions=None, ltx_configs_override=None):
|
| 274 |
"""
|
| 275 |
[NÓ DE GERAÇÃO]
|
| 276 |
Gera um ÚNICO chunk de latentes brutos. Esta é a unidade de trabalho fundamental.
|
| 277 |
"""
|
|
|
|
| 278 |
print("\n" + "-"*20 + " INÍCIO: _generate_single_chunk_low " + "-"*20)
|
| 279 |
+
|
| 280 |
+
# --- NÓ 1.1: SETUP DE PARÂMETROS ---
|
| 281 |
height_padded = ((height - 1) // 8 + 1) * 8
|
| 282 |
width_padded = ((width - 1) // 8 + 1) * 8
|
| 283 |
generator = torch.Generator(device=self.device).manual_seed(seed)
|
|
|
|
| 290 |
x_height = int(height_padded * downscale_factor)
|
| 291 |
downscaled_height = x_height - (x_height % vae_scale_factor)
|
| 292 |
|
| 293 |
+
# --- NÓ 1.2: MONTAGEM DE CONDIÇÕES E OVERRIDES ---
|
| 294 |
all_conditions = []
|
| 295 |
if image_conditions: all_conditions.extend(image_conditions)
|
| 296 |
if initial_latent_condition: all_conditions.append(initial_latent_condition)
|
|
|
|
| 299 |
|
| 300 |
if ltx_configs_override:
|
| 301 |
print("[DEBUG] Sobrepondo configurações do LTX com valores da UI...")
|
| 302 |
+
preset = ltx_configs_override.get("guidance_preset")
|
| 303 |
+
if preset == "Customizado":
|
| 304 |
+
try:
|
| 305 |
+
first_pass_config["guidance_scale"] = json.loads(ltx_configs_override["guidance_scale_list"])
|
| 306 |
+
first_pass_config["stg_scale"] = json.loads(ltx_configs_override["stg_scale_list"])
|
| 307 |
+
first_pass_config["guidance_timesteps"] = json.loads(ltx_configs_override["timesteps_list"])
|
| 308 |
+
except Exception as e:
|
| 309 |
+
print(f" > ERRO ao parsear valores customizados: {e}. Usando Padrão como fallback.")
|
| 310 |
+
elif preset == "Agressivo":
|
| 311 |
+
first_pass_config["guidance_scale"] = [1, 2, 8, 12, 8, 2, 1]
|
| 312 |
+
first_pass_config["stg_scale"] = [0, 0, 5, 6, 5, 3, 2]
|
| 313 |
+
elif preset == "Suave":
|
| 314 |
+
first_pass_config["guidance_scale"] = [1, 1, 4, 5, 4, 1, 1]
|
| 315 |
+
first_pass_config["stg_scale"] = [0, 0, 2, 2, 2, 1, 0]
|
| 316 |
+
|
| 317 |
if "first_pass_num_inference_steps" in ltx_configs_override:
|
| 318 |
first_pass_config["num_inference_steps"] = ltx_configs_override["first_pass_num_inference_steps"]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 319 |
|
| 320 |
first_pass_kwargs = {
|
| 321 |
"prompt": prompt, "negative_prompt": negative_prompt, "height": downscaled_height, "width": downscaled_width,
|
|
|
|
| 323 |
"conditioning_items": all_conditions if all_conditions else None,
|
| 324 |
**first_pass_config
|
| 325 |
}
|
| 326 |
+
|
| 327 |
+
# --- NÓ 1.3: CHAMADA AO PIPELINE ---
|
|
|
|
|
|
|
| 328 |
with torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype, enabled=self.device.type == 'cuda'):
|
| 329 |
latents_bruto = self.pipeline(**first_pass_kwargs).images
|
| 330 |
log_tensor_info(latents_bruto, f"Latente Bruto Gerado para: '{prompt[:40]}...'")
|
|
|
|
| 332 |
print("-" * 20 + " FIM: _generate_single_chunk_low " + "-"*20)
|
| 333 |
return latents_bruto
|
| 334 |
|
| 335 |
+
# ==============================================================================
|
| 336 |
+
# --- FUNÇÃO #2: ORQUESTRADOR NARRATIVO (MÚLTIPLOS PROMPTS) ---
|
| 337 |
+
# ==============================================================================
|
| 338 |
def generate_narrative_low(self, prompt: str, negative_prompt, height, width, duration, guidance_scale, seed, initial_image_conditions=None, overlap_frames: int = 8, ltx_configs_override: dict = None):
|
| 339 |
"""
|
| 340 |
[ORQUESTRADOR NARRATIVO]
|
|
|
|
| 394 |
|
| 395 |
latentes_bruto = self._generate_single_chunk_low(
|
| 396 |
prompt=chunk_prompt, negative_prompt=negative_prompt, height=height, width=width,
|
| 397 |
+
num_frames=num_frames_para_gerar, guidance_scale=guidance_scale, seed=used_seed + i,
|
|
|
|
|
|
|
| 398 |
initial_latent_condition=condition_item_latent_overlap, image_conditions=current_image_conditions,
|
| 399 |
ltx_configs_override=ltx_configs_override
|
| 400 |
)
|
|
|
|
| 419 |
torch.save(final_latents.cpu(), tensor_path)
|
| 420 |
|
| 421 |
with torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype, enabled=self.device.type == 'cuda'):
|
| 422 |
+
pixel_tensor = vae_manager_singleton.decode(final_latents, decode_timestep=float(ltx_configs_override.get("decode_timestep", 0.05) if ltx_configs_override else 0.05))
|
| 423 |
video_path = self._save_and_log_video(pixel_tensor, "narrative_video", FPS, temp_dir, results_dir, used_seed)
|
| 424 |
|
| 425 |
self.finalize(keep_paths=[video_path, tensor_path])
|
| 426 |
return video_path, tensor_path, used_seed
|
| 427 |
+
|
| 428 |
+
# ==============================================================================
|
| 429 |
+
# --- FUNÇÃO #3: ORQUESTRADOR SIMPLES (PROMPT ÚNICO) ---
|
| 430 |
+
# ==============================================================================
|
| 431 |
def generate_single_low(self, prompt: str, negative_prompt, height, width, duration, guidance_scale, seed, initial_image_conditions=None, ltx_configs_override: dict = None):
|
| 432 |
"""
|
| 433 |
[ORQUESTRADOR SIMPLES]
|
|
|
|
| 448 |
|
| 449 |
# Chama a função de geração de chunk único para fazer todo o trabalho
|
| 450 |
final_latents = self._generate_single_chunk_low(
|
| 451 |
+
prompt=prompt, negative_prompt=negative_prompt, height=height, width=width,
|
| 452 |
+
num_frames=total_actual_frames, guidance_scale=guidance_scale, seed=used_seed,
|
| 453 |
+
image_conditions=initial_image_conditions, ltx_configs_override=ltx_configs_override
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 454 |
)
|
| 455 |
|
| 456 |
print("\n--- Finalizando Geração Simples: Salvando e decodificando ---")
|
|
|
|
| 460 |
torch.save(final_latents.cpu(), tensor_path)
|
| 461 |
|
| 462 |
with torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype, enabled=self.device.type == 'cuda'):
|
| 463 |
+
pixel_tensor = vae_manager_singleton.decode(final_latents, decode_timestep=float(ltx_configs_override.get("decode_timestep", 0.05) if ltx_configs_override else 0.05))
|
| 464 |
video_path = self._save_and_log_video(pixel_tensor, "single_video", FPS, temp_dir, results_dir, used_seed)
|
| 465 |
|
| 466 |
self.finalize(keep_paths=[video_path, tensor_path])
|
| 467 |
return video_path, tensor_path, used_seed
|
| 468 |
+
|
| 469 |
+
# ==============================================================================
|
| 470 |
+
# --- FUNÇÃO #4: ORQUESTRADOR (Upscaler + texturas hd) ---
|
| 471 |
+
# ==============================================================================
|
| 472 |
def generate_upscale_denoise(self, latents_path, prompt, negative_prompt, guidance_scale, seed):
|
| 473 |
used_seed = random.randint(0, 2**32 - 1) if seed is None else int(seed)
|
| 474 |
seed_everething(used_seed)
|