Spaces:
Sleeping
Sleeping
Samuel Stevens
commited on
Commit
·
290c238
1
Parent(s):
5cfebb1
wip: hierarchical prediction
Browse files- README.md +0 -2
- app.py +42 -8
- embed_texts.sh +12 -0
- lib.py +122 -0
- make_txt_embedding.py +89 -0
- templates.py +80 -81
- test_lib.py +424 -0
README.md
CHANGED
|
@@ -9,5 +9,3 @@ app_file: app.py
|
|
| 9 |
pinned: false
|
| 10 |
license: mit
|
| 11 |
---
|
| 12 |
-
|
| 13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 9 |
pinned: false
|
| 10 |
license: mit
|
| 11 |
---
|
|
|
|
|
|
app.py
CHANGED
|
@@ -1,3 +1,5 @@
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
import torch.nn.functional as F
|
|
@@ -6,9 +8,13 @@ from torchvision import transforms
|
|
| 6 |
|
| 7 |
from templates import openai_imagenet_template
|
| 8 |
|
|
|
|
|
|
|
|
|
|
| 9 |
model_str = "hf-hub:imageomics/bioclip"
|
| 10 |
tokenizer_str = "ViT-B-16"
|
| 11 |
|
|
|
|
| 12 |
|
| 13 |
preprocess_img = transforms.Compose(
|
| 14 |
[
|
|
@@ -26,7 +32,7 @@ def get_txt_features(classnames, templates):
|
|
| 26 |
all_features = []
|
| 27 |
for classname in classnames:
|
| 28 |
txts = [template(classname) for template in templates]
|
| 29 |
-
txts = tokenizer(txts)
|
| 30 |
txt_features = model.encode_text(txts)
|
| 31 |
txt_features = F.normalize(txt_features, dim=-1).mean(dim=0)
|
| 32 |
txt_features /= txt_features.norm()
|
|
@@ -36,22 +42,43 @@ def get_txt_features(classnames, templates):
|
|
| 36 |
|
| 37 |
|
| 38 |
@torch.no_grad()
|
| 39 |
-
def predict(img,
|
| 40 |
-
classes = [cls.strip() for cls in
|
| 41 |
txt_features = get_txt_features(classes, openai_imagenet_template)
|
| 42 |
|
| 43 |
-
img = preprocess_img(img)
|
| 44 |
-
|
| 45 |
img_features = model.encode_image(img.unsqueeze(0))
|
| 46 |
img_features = F.normalize(img_features, dim=-1)
|
|
|
|
| 47 |
logits = (model.logit_scale.exp() * img_features @ txt_features).squeeze()
|
| 48 |
-
probs = F.softmax(logits, dim=0).tolist()
|
| 49 |
return {cls: prob for cls, prob in zip(classes, probs)}
|
| 50 |
|
| 51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
if __name__ == "__main__":
|
| 53 |
print("Starting.")
|
| 54 |
model = create_model(model_str, output_dict=True, require_pretrained=True)
|
|
|
|
| 55 |
print("Created model.")
|
| 56 |
|
| 57 |
model = torch.compile(model)
|
|
@@ -60,14 +87,21 @@ if __name__ == "__main__":
|
|
| 60 |
tokenizer = get_tokenizer(tokenizer_str)
|
| 61 |
|
| 62 |
demo = gr.Interface(
|
| 63 |
-
fn=
|
| 64 |
inputs=[
|
| 65 |
gr.Image(shape=(224, 224)),
|
| 66 |
gr.Textbox(
|
| 67 |
-
placeholder="dog\ncat\n...",
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
),
|
| 69 |
],
|
| 70 |
outputs=gr.Label(num_top_classes=20, label="Predictions", show_label=True),
|
|
|
|
|
|
|
|
|
|
| 71 |
)
|
| 72 |
|
| 73 |
demo.launch()
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
|
| 3 |
import gradio as gr
|
| 4 |
import torch
|
| 5 |
import torch.nn.functional as F
|
|
|
|
| 8 |
|
| 9 |
from templates import openai_imagenet_template
|
| 10 |
|
| 11 |
+
hf_token = os.getenv("HF_TOKEN")
|
| 12 |
+
hf_writer = gr.HuggingFaceDatasetSaver(hf_token, "bioclip-demo")
|
| 13 |
+
|
| 14 |
model_str = "hf-hub:imageomics/bioclip"
|
| 15 |
tokenizer_str = "ViT-B-16"
|
| 16 |
|
| 17 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 18 |
|
| 19 |
preprocess_img = transforms.Compose(
|
| 20 |
[
|
|
|
|
| 32 |
all_features = []
|
| 33 |
for classname in classnames:
|
| 34 |
txts = [template(classname) for template in templates]
|
| 35 |
+
txts = tokenizer(txts).to(device)
|
| 36 |
txt_features = model.encode_text(txts)
|
| 37 |
txt_features = F.normalize(txt_features, dim=-1).mean(dim=0)
|
| 38 |
txt_features /= txt_features.norm()
|
|
|
|
| 42 |
|
| 43 |
|
| 44 |
@torch.no_grad()
|
| 45 |
+
def predict(img, classes: list[str]) -> dict[str, float]:
|
| 46 |
+
classes = [cls.strip() for cls in classes if cls.strip()]
|
| 47 |
txt_features = get_txt_features(classes, openai_imagenet_template)
|
| 48 |
|
| 49 |
+
img = preprocess_img(img).to(device)
|
|
|
|
| 50 |
img_features = model.encode_image(img.unsqueeze(0))
|
| 51 |
img_features = F.normalize(img_features, dim=-1)
|
| 52 |
+
|
| 53 |
logits = (model.logit_scale.exp() * img_features @ txt_features).squeeze()
|
| 54 |
+
probs = F.softmax(logits, dim=0).to("cpu").tolist()
|
| 55 |
return {cls: prob for cls, prob in zip(classes, probs)}
|
| 56 |
|
| 57 |
|
| 58 |
+
def hierarchical_predict(img) -> list[str]:
|
| 59 |
+
"""
|
| 60 |
+
Predicts from the top of the tree of life down to the species.
|
| 61 |
+
"""
|
| 62 |
+
img = preprocess_img(img).to(device)
|
| 63 |
+
img_features = model.encode_image(img.unsqueeze(0))
|
| 64 |
+
img_features = F.normalize(img_features, dim=-1)
|
| 65 |
+
|
| 66 |
+
breakpoint()
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
def run(img, cls_str: str) -> dict[str, float]:
|
| 70 |
+
breakpoint()
|
| 71 |
+
if cls_str:
|
| 72 |
+
classes = [cls.strip() for cls in cls_str.split("\n") if cls.strip()]
|
| 73 |
+
return predict(img, classes)
|
| 74 |
+
else:
|
| 75 |
+
return hierarchical_predict(img)
|
| 76 |
+
|
| 77 |
+
|
| 78 |
if __name__ == "__main__":
|
| 79 |
print("Starting.")
|
| 80 |
model = create_model(model_str, output_dict=True, require_pretrained=True)
|
| 81 |
+
model = model.to(device)
|
| 82 |
print("Created model.")
|
| 83 |
|
| 84 |
model = torch.compile(model)
|
|
|
|
| 87 |
tokenizer = get_tokenizer(tokenizer_str)
|
| 88 |
|
| 89 |
demo = gr.Interface(
|
| 90 |
+
fn=run,
|
| 91 |
inputs=[
|
| 92 |
gr.Image(shape=(224, 224)),
|
| 93 |
gr.Textbox(
|
| 94 |
+
placeholder="dog\ncat\n...",
|
| 95 |
+
lines=3,
|
| 96 |
+
label="Classes",
|
| 97 |
+
show_label=True,
|
| 98 |
+
info="If empty, will predict from the entire tree of life.",
|
| 99 |
),
|
| 100 |
],
|
| 101 |
outputs=gr.Label(num_top_classes=20, label="Predictions", show_label=True),
|
| 102 |
+
allow_flagging="manual",
|
| 103 |
+
flagging_options=["Incorrect", "Other"],
|
| 104 |
+
flagging_callback=hf_writer,
|
| 105 |
)
|
| 106 |
|
| 107 |
demo.launch()
|
embed_texts.sh
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env bash
|
| 2 |
+
#SBATCH --nodes=1
|
| 3 |
+
#SBATCH --account=PAS2136
|
| 4 |
+
#SBATCH --gpus-per-node=1
|
| 5 |
+
#SBATCH --ntasks-per-node=10
|
| 6 |
+
#SBATCH --job-name=embed-treeoflife
|
| 7 |
+
#SBATCH --time=12:00:00
|
| 8 |
+
#SBATCH --partition=gpu
|
| 9 |
+
|
| 10 |
+
python make_txt_embedding.py \
|
| 11 |
+
--catalog-path /fs/ess/PAS2136/open_clip/data/evobio10m-v3.3/predicted-statistics.csv \
|
| 12 |
+
--out-path text_emb.bin
|
lib.py
ADDED
|
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import itertools
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
class TaxonomicNode:
|
| 6 |
+
__slots__ = ("name", "index", "root", "_children")
|
| 7 |
+
|
| 8 |
+
def __init__(self, name, index, root):
|
| 9 |
+
self.name = name
|
| 10 |
+
self.index = index
|
| 11 |
+
self.root = root
|
| 12 |
+
self._children = {}
|
| 13 |
+
|
| 14 |
+
def add(self, name):
|
| 15 |
+
added = 0
|
| 16 |
+
if not name:
|
| 17 |
+
return added
|
| 18 |
+
|
| 19 |
+
first, rest = name[0], name[1:]
|
| 20 |
+
if first not in self._children:
|
| 21 |
+
self._children[first] = TaxonomicNode(first, self.root.size, self.root)
|
| 22 |
+
self.root.size += 1
|
| 23 |
+
|
| 24 |
+
self._children[first].add(rest)
|
| 25 |
+
|
| 26 |
+
def children(self, name):
|
| 27 |
+
if not name:
|
| 28 |
+
return set((child.name, child.index) for child in self._children.values())
|
| 29 |
+
|
| 30 |
+
first, rest = name[0], name[1:]
|
| 31 |
+
if first not in self._children:
|
| 32 |
+
return set()
|
| 33 |
+
|
| 34 |
+
return self._children[first].children(rest)
|
| 35 |
+
|
| 36 |
+
def __iter__(self):
|
| 37 |
+
yield self.name, self.index
|
| 38 |
+
|
| 39 |
+
for child in self._children.values():
|
| 40 |
+
for name, index in child:
|
| 41 |
+
yield f"{self.name} {name}", index
|
| 42 |
+
|
| 43 |
+
@classmethod
|
| 44 |
+
def from_dict(cls, dct, root):
|
| 45 |
+
node = cls(dct["name"], dct["index"], root)
|
| 46 |
+
node._children = {child["name"]: cls.from_dict(child, root) for child in dct["children"]}
|
| 47 |
+
return node
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
class TaxonomicTree:
|
| 52 |
+
"""
|
| 53 |
+
Efficient structure for finding taxonomic names and their descendants.
|
| 54 |
+
Also returns an integer index i for each possible name.
|
| 55 |
+
"""
|
| 56 |
+
|
| 57 |
+
def __init__(self):
|
| 58 |
+
self.kingdoms = {}
|
| 59 |
+
self.size = 0
|
| 60 |
+
|
| 61 |
+
def add(self, name: list[str]):
|
| 62 |
+
if not name:
|
| 63 |
+
return
|
| 64 |
+
|
| 65 |
+
first, rest = name[0], name[1:]
|
| 66 |
+
if first not in self.kingdoms:
|
| 67 |
+
self.kingdoms[first] = TaxonomicNode(first, self.size, self)
|
| 68 |
+
self.size += 1
|
| 69 |
+
|
| 70 |
+
self.kingdoms[first].add(rest)
|
| 71 |
+
|
| 72 |
+
def children(self, name=None):
|
| 73 |
+
if not name:
|
| 74 |
+
return set(
|
| 75 |
+
(kingdom.name, kingdom.index) for kingdom in self.kingdoms.values()
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
first, rest = name[0], name[1:]
|
| 79 |
+
if first not in self.kingdoms:
|
| 80 |
+
return set()
|
| 81 |
+
|
| 82 |
+
return self.kingdoms[first].children(rest)
|
| 83 |
+
|
| 84 |
+
def __iter__(self):
|
| 85 |
+
for kingdom in self.kingdoms.values():
|
| 86 |
+
yield from kingdom
|
| 87 |
+
|
| 88 |
+
@classmethod
|
| 89 |
+
def from_dict(cls, dct):
|
| 90 |
+
tree = cls()
|
| 91 |
+
tree.kingdoms = {
|
| 92 |
+
kingdom["name"]: TaxonomicNode.from_dict(kingdom, tree) for kingdom in dct["kingdoms"]
|
| 93 |
+
}
|
| 94 |
+
tree.size = dct["size"]
|
| 95 |
+
return tree
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
class TaxonomicJsonEncoder(json.JSONEncoder):
|
| 99 |
+
def default(self, obj):
|
| 100 |
+
if isinstance(obj, TaxonomicNode):
|
| 101 |
+
return {
|
| 102 |
+
"name": obj.name,
|
| 103 |
+
"index": obj.index,
|
| 104 |
+
"children": list(obj._children.values()),
|
| 105 |
+
}
|
| 106 |
+
elif isinstance(obj, TaxonomicTree):
|
| 107 |
+
return {
|
| 108 |
+
"kingdoms": list(obj.kingdoms.values()),
|
| 109 |
+
"size": obj.size,
|
| 110 |
+
}
|
| 111 |
+
else:
|
| 112 |
+
super().default(self, obj)
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
def batched(iterable, n):
|
| 117 |
+
# batched('ABCDEFG', 3) --> ABC DEF G
|
| 118 |
+
if n < 1:
|
| 119 |
+
raise ValueError('n must be at least one')
|
| 120 |
+
it = iter(iterable)
|
| 121 |
+
while batch := tuple(itertools.islice(it, n)):
|
| 122 |
+
yield zip(*batch)
|
make_txt_embedding.py
ADDED
|
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Makes the entire set of text emebeddings for all possible names in the tree of life.
|
| 3 |
+
Uses the catalog.csv file from TreeOfLife-10M.
|
| 4 |
+
"""
|
| 5 |
+
import argparse
|
| 6 |
+
import csv
|
| 7 |
+
import json
|
| 8 |
+
|
| 9 |
+
import numpy as np
|
| 10 |
+
import torch
|
| 11 |
+
import torch.nn.functional as F
|
| 12 |
+
from open_clip import create_model, get_tokenizer
|
| 13 |
+
from tqdm import tqdm
|
| 14 |
+
|
| 15 |
+
import lib
|
| 16 |
+
from templates import openai_imagenet_template
|
| 17 |
+
|
| 18 |
+
model_str = "hf-hub:imageomics/bioclip"
|
| 19 |
+
tokenizer_str = "ViT-B-16"
|
| 20 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
@torch.no_grad()
|
| 24 |
+
def write_txt_features(name_lookup):
|
| 25 |
+
all_features = np.memmap(
|
| 26 |
+
args.out_path, dtype=np.float32, mode="w+", shape=(512, name_lookup.size)
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
batch_size = args.batch_size // len(openai_imagenet_template)
|
| 30 |
+
for names, indices in tqdm(lib.batched(name_lookup, batch_size)):
|
| 31 |
+
txts = [template(name) for name in names for template in openai_imagenet_template]
|
| 32 |
+
txts = tokenizer(txts).to(device)
|
| 33 |
+
txt_features = model.encode_text(txts)
|
| 34 |
+
txt_features = torch.reshape(txt_features, (batch_size, len(openai_imagenet_template), 512))
|
| 35 |
+
txt_features = F.normalize(txt_features, dim=2).mean(dim=1)
|
| 36 |
+
txt_features /= txt_features.norm(dim=1, keepdim=True)
|
| 37 |
+
all_features[:, indices] = txt_features.cpu().numpy().T
|
| 38 |
+
|
| 39 |
+
all_features.flush()
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def get_name_lookup(catalog_path):
|
| 43 |
+
lookup = lib.TaxonomicTree()
|
| 44 |
+
|
| 45 |
+
with open(catalog_path) as fd:
|
| 46 |
+
reader = csv.DictReader(fd)
|
| 47 |
+
for row in tqdm(reader):
|
| 48 |
+
name = [
|
| 49 |
+
row["kingdom"],
|
| 50 |
+
row["phylum"],
|
| 51 |
+
row["class"],
|
| 52 |
+
row["order"],
|
| 53 |
+
row["family"],
|
| 54 |
+
row["genus"],
|
| 55 |
+
row["species"],
|
| 56 |
+
]
|
| 57 |
+
if any(not value for value in name):
|
| 58 |
+
name = name[: name.index("")]
|
| 59 |
+
lookup.add(name)
|
| 60 |
+
|
| 61 |
+
return lookup
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
if __name__ == "__main__":
|
| 65 |
+
parser = argparse.ArgumentParser()
|
| 66 |
+
parser.add_argument(
|
| 67 |
+
"--catalog-path",
|
| 68 |
+
help="Path to the catalog.csv file from TreeOfLife-10M.",
|
| 69 |
+
required=True,
|
| 70 |
+
)
|
| 71 |
+
parser.add_argument("--out-path", help="Path to the output file.", required=True)
|
| 72 |
+
parser.add_argument("--name-cache-path", help="Path to the name cache file.", default=".name_lookup_cache.json")
|
| 73 |
+
parser.add_argument("--batch-size", help="Batch size.", default=2 ** 15, type=int)
|
| 74 |
+
args = parser.parse_args()
|
| 75 |
+
|
| 76 |
+
name_lookup = get_name_lookup(args.catalog_path)
|
| 77 |
+
with open(args.name_cache_path, "w") as fd:
|
| 78 |
+
json.dump(name_lookup, fd, cls=lib.TaxonomicJsonEncoder)
|
| 79 |
+
|
| 80 |
+
print("Starting.")
|
| 81 |
+
model = create_model(model_str, output_dict=True, require_pretrained=True)
|
| 82 |
+
model = model.to(device)
|
| 83 |
+
print("Created model.")
|
| 84 |
+
|
| 85 |
+
model = torch.compile(model)
|
| 86 |
+
print("Compiled model.")
|
| 87 |
+
|
| 88 |
+
tokenizer = get_tokenizer(tokenizer_str)
|
| 89 |
+
write_txt_features(name_lookup)
|
templates.py
CHANGED
|
@@ -1,83 +1,82 @@
|
|
| 1 |
openai_imagenet_template = [
|
| 2 |
-
lambda c: f
|
| 3 |
-
lambda c: f
|
| 4 |
-
lambda c: f
|
| 5 |
-
lambda c: f
|
| 6 |
-
lambda c: f
|
| 7 |
-
lambda c: f
|
| 8 |
-
lambda c: f
|
| 9 |
-
lambda c: f
|
| 10 |
-
lambda c: f
|
| 11 |
-
lambda c: f
|
| 12 |
-
lambda c: f
|
| 13 |
-
lambda c: f
|
| 14 |
-
lambda c: f
|
| 15 |
-
lambda c: f
|
| 16 |
-
lambda c: f
|
| 17 |
-
lambda c: f
|
| 18 |
-
lambda c: f
|
| 19 |
-
lambda c: f
|
| 20 |
-
lambda c: f
|
| 21 |
-
lambda c: f
|
| 22 |
-
lambda c: f
|
| 23 |
-
lambda c: f
|
| 24 |
-
lambda c: f
|
| 25 |
-
lambda c: f
|
| 26 |
-
lambda c: f
|
| 27 |
-
lambda c: f
|
| 28 |
-
lambda c: f
|
| 29 |
-
lambda c: f
|
| 30 |
-
lambda c: f
|
| 31 |
-
lambda c: f
|
| 32 |
-
lambda c: f
|
| 33 |
-
lambda c: f
|
| 34 |
-
lambda c: f
|
| 35 |
-
lambda c: f
|
| 36 |
-
lambda c: f
|
| 37 |
-
lambda c: f
|
| 38 |
-
lambda c: f
|
| 39 |
-
lambda c: f
|
| 40 |
-
lambda c: f
|
| 41 |
-
lambda c: f
|
| 42 |
-
lambda c: f
|
| 43 |
-
lambda c: f
|
| 44 |
-
lambda c: f
|
| 45 |
-
lambda c: f
|
| 46 |
-
lambda c: f
|
| 47 |
-
lambda c: f
|
| 48 |
-
lambda c: f
|
| 49 |
-
lambda c: f
|
| 50 |
-
lambda c: f
|
| 51 |
-
lambda c: f
|
| 52 |
-
lambda c: f
|
| 53 |
-
lambda c: f
|
| 54 |
-
lambda c: f
|
| 55 |
-
lambda c: f
|
| 56 |
-
lambda c: f
|
| 57 |
-
lambda c: f
|
| 58 |
-
lambda c: f
|
| 59 |
-
lambda c: f
|
| 60 |
-
lambda c: f
|
| 61 |
-
lambda c: f
|
| 62 |
-
lambda c: f
|
| 63 |
-
lambda c: f
|
| 64 |
-
lambda c: f
|
| 65 |
-
lambda c: f
|
| 66 |
-
lambda c: f
|
| 67 |
-
lambda c: f
|
| 68 |
-
lambda c: f
|
| 69 |
-
lambda c: f
|
| 70 |
-
lambda c: f
|
| 71 |
-
lambda c: f
|
| 72 |
-
lambda c: f
|
| 73 |
-
lambda c: f
|
| 74 |
-
lambda c: f
|
| 75 |
-
lambda c: f
|
| 76 |
-
lambda c: f
|
| 77 |
-
lambda c: f
|
| 78 |
-
lambda c: f
|
| 79 |
-
lambda c: f
|
| 80 |
-
lambda c: f
|
| 81 |
-
lambda c: f
|
| 82 |
]
|
| 83 |
-
|
|
|
|
| 1 |
openai_imagenet_template = [
|
| 2 |
+
lambda c: f"a bad photo of a {c}.",
|
| 3 |
+
lambda c: f"a photo of many {c}.",
|
| 4 |
+
lambda c: f"a sculpture of a {c}.",
|
| 5 |
+
lambda c: f"a photo of the hard to see {c}.",
|
| 6 |
+
lambda c: f"a low resolution photo of the {c}.",
|
| 7 |
+
lambda c: f"a rendering of a {c}.",
|
| 8 |
+
lambda c: f"graffiti of a {c}.",
|
| 9 |
+
lambda c: f"a bad photo of the {c}.",
|
| 10 |
+
lambda c: f"a cropped photo of the {c}.",
|
| 11 |
+
lambda c: f"a tattoo of a {c}.",
|
| 12 |
+
lambda c: f"the embroidered {c}.",
|
| 13 |
+
lambda c: f"a photo of a hard to see {c}.",
|
| 14 |
+
lambda c: f"a bright photo of a {c}.",
|
| 15 |
+
lambda c: f"a photo of a clean {c}.",
|
| 16 |
+
lambda c: f"a photo of a dirty {c}.",
|
| 17 |
+
lambda c: f"a dark photo of the {c}.",
|
| 18 |
+
lambda c: f"a drawing of a {c}.",
|
| 19 |
+
lambda c: f"a photo of my {c}.",
|
| 20 |
+
lambda c: f"the plastic {c}.",
|
| 21 |
+
lambda c: f"a photo of the cool {c}.",
|
| 22 |
+
lambda c: f"a close-up photo of a {c}.",
|
| 23 |
+
lambda c: f"a black and white photo of the {c}.",
|
| 24 |
+
lambda c: f"a painting of the {c}.",
|
| 25 |
+
lambda c: f"a painting of a {c}.",
|
| 26 |
+
lambda c: f"a pixelated photo of the {c}.",
|
| 27 |
+
lambda c: f"a sculpture of the {c}.",
|
| 28 |
+
lambda c: f"a bright photo of the {c}.",
|
| 29 |
+
lambda c: f"a cropped photo of a {c}.",
|
| 30 |
+
lambda c: f"a plastic {c}.",
|
| 31 |
+
lambda c: f"a photo of the dirty {c}.",
|
| 32 |
+
lambda c: f"a jpeg corrupted photo of a {c}.",
|
| 33 |
+
lambda c: f"a blurry photo of the {c}.",
|
| 34 |
+
lambda c: f"a photo of the {c}.",
|
| 35 |
+
lambda c: f"a good photo of the {c}.",
|
| 36 |
+
lambda c: f"a rendering of the {c}.",
|
| 37 |
+
lambda c: f"a {c} in a video game.",
|
| 38 |
+
lambda c: f"a photo of one {c}.",
|
| 39 |
+
lambda c: f"a doodle of a {c}.",
|
| 40 |
+
lambda c: f"a close-up photo of the {c}.",
|
| 41 |
+
lambda c: f"a photo of a {c}.",
|
| 42 |
+
lambda c: f"the origami {c}.",
|
| 43 |
+
lambda c: f"the {c} in a video game.",
|
| 44 |
+
lambda c: f"a sketch of a {c}.",
|
| 45 |
+
lambda c: f"a doodle of the {c}.",
|
| 46 |
+
lambda c: f"a origami {c}.",
|
| 47 |
+
lambda c: f"a low resolution photo of a {c}.",
|
| 48 |
+
lambda c: f"the toy {c}.",
|
| 49 |
+
lambda c: f"a rendition of the {c}.",
|
| 50 |
+
lambda c: f"a photo of the clean {c}.",
|
| 51 |
+
lambda c: f"a photo of a large {c}.",
|
| 52 |
+
lambda c: f"a rendition of a {c}.",
|
| 53 |
+
lambda c: f"a photo of a nice {c}.",
|
| 54 |
+
lambda c: f"a photo of a weird {c}.",
|
| 55 |
+
lambda c: f"a blurry photo of a {c}.",
|
| 56 |
+
lambda c: f"a cartoon {c}.",
|
| 57 |
+
lambda c: f"art of a {c}.",
|
| 58 |
+
lambda c: f"a sketch of the {c}.",
|
| 59 |
+
lambda c: f"a embroidered {c}.",
|
| 60 |
+
lambda c: f"a pixelated photo of a {c}.",
|
| 61 |
+
lambda c: f"itap of the {c}.",
|
| 62 |
+
lambda c: f"a jpeg corrupted photo of the {c}.",
|
| 63 |
+
lambda c: f"a good photo of a {c}.",
|
| 64 |
+
lambda c: f"a plushie {c}.",
|
| 65 |
+
lambda c: f"a photo of the nice {c}.",
|
| 66 |
+
lambda c: f"a photo of the small {c}.",
|
| 67 |
+
lambda c: f"a photo of the weird {c}.",
|
| 68 |
+
lambda c: f"the cartoon {c}.",
|
| 69 |
+
lambda c: f"art of the {c}.",
|
| 70 |
+
lambda c: f"a drawing of the {c}.",
|
| 71 |
+
lambda c: f"a photo of the large {c}.",
|
| 72 |
+
lambda c: f"a black and white photo of a {c}.",
|
| 73 |
+
lambda c: f"the plushie {c}.",
|
| 74 |
+
lambda c: f"a dark photo of a {c}.",
|
| 75 |
+
lambda c: f"itap of a {c}.",
|
| 76 |
+
lambda c: f"graffiti of the {c}.",
|
| 77 |
+
lambda c: f"a toy {c}.",
|
| 78 |
+
lambda c: f"itap of my {c}.",
|
| 79 |
+
lambda c: f"a photo of a cool {c}.",
|
| 80 |
+
lambda c: f"a photo of a small {c}.",
|
| 81 |
+
lambda c: f"a tattoo of the {c}.",
|
| 82 |
]
|
|
|
test_lib.py
ADDED
|
@@ -0,0 +1,424 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import lib
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
def test_taxonomiclookup_empty():
|
| 5 |
+
lookup = lib.TaxonomicTree()
|
| 6 |
+
assert lookup.size == 0
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def test_taxonomiclookup_kingdom_size():
|
| 10 |
+
lookup = lib.TaxonomicTree()
|
| 11 |
+
|
| 12 |
+
lookup.add(("Animalia",))
|
| 13 |
+
|
| 14 |
+
assert lookup.size == 1
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def test_taxonomiclookup_genus_size():
|
| 18 |
+
lookup = lib.TaxonomicTree()
|
| 19 |
+
|
| 20 |
+
lookup.add(
|
| 21 |
+
(
|
| 22 |
+
"Animalia",
|
| 23 |
+
"Chordata",
|
| 24 |
+
"Aves",
|
| 25 |
+
"Accipitriformes",
|
| 26 |
+
"Accipitridae",
|
| 27 |
+
"Halieaeetus",
|
| 28 |
+
)
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
assert lookup.size == 6
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def test_taxonomictree_kingdom_children():
|
| 35 |
+
lookup = lib.TaxonomicTree()
|
| 36 |
+
|
| 37 |
+
lookup.add(
|
| 38 |
+
(
|
| 39 |
+
"Animalia",
|
| 40 |
+
"Chordata",
|
| 41 |
+
"Aves",
|
| 42 |
+
"Accipitriformes",
|
| 43 |
+
"Accipitridae",
|
| 44 |
+
"Halieaeetus",
|
| 45 |
+
)
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
expected = set([("Animalia", 0)])
|
| 49 |
+
actual = lookup.children()
|
| 50 |
+
assert actual == expected
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def test_taxonomiclookup_children_of_animal_only_birds():
|
| 54 |
+
lookup = lib.TaxonomicTree()
|
| 55 |
+
|
| 56 |
+
lookup.add(
|
| 57 |
+
(
|
| 58 |
+
"Animalia",
|
| 59 |
+
"Chordata",
|
| 60 |
+
"Aves",
|
| 61 |
+
"Accipitriformes",
|
| 62 |
+
"Accipitridae",
|
| 63 |
+
"Halieaeetus",
|
| 64 |
+
"leucocephalus",
|
| 65 |
+
)
|
| 66 |
+
)
|
| 67 |
+
lookup.add(
|
| 68 |
+
(
|
| 69 |
+
"Animalia",
|
| 70 |
+
"Chordata",
|
| 71 |
+
"Aves",
|
| 72 |
+
"Strigiformes",
|
| 73 |
+
"Strigidae",
|
| 74 |
+
"Ninox",
|
| 75 |
+
"scutulata",
|
| 76 |
+
)
|
| 77 |
+
)
|
| 78 |
+
lookup.add(
|
| 79 |
+
(
|
| 80 |
+
"Animalia",
|
| 81 |
+
"Chordata",
|
| 82 |
+
"Aves",
|
| 83 |
+
"Strigiformes",
|
| 84 |
+
"Strigidae",
|
| 85 |
+
"Ninox",
|
| 86 |
+
"plesseni",
|
| 87 |
+
)
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
actual = lookup.children(("Animalia",))
|
| 91 |
+
expected = set([("Chordata", 1)])
|
| 92 |
+
assert actual == expected
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
def test_taxonomiclookup_children_of_animal():
|
| 96 |
+
lookup = lib.TaxonomicTree()
|
| 97 |
+
|
| 98 |
+
lookup.add(
|
| 99 |
+
(
|
| 100 |
+
"Animalia",
|
| 101 |
+
"Chordata",
|
| 102 |
+
"Aves",
|
| 103 |
+
"Accipitriformes",
|
| 104 |
+
"Accipitridae",
|
| 105 |
+
"Halieaeetus",
|
| 106 |
+
"leucocephalus",
|
| 107 |
+
)
|
| 108 |
+
)
|
| 109 |
+
lookup.add(
|
| 110 |
+
(
|
| 111 |
+
"Animalia",
|
| 112 |
+
"Chordata",
|
| 113 |
+
"Aves",
|
| 114 |
+
"Strigiformes",
|
| 115 |
+
"Strigidae",
|
| 116 |
+
"Ninox",
|
| 117 |
+
"scutulata",
|
| 118 |
+
)
|
| 119 |
+
)
|
| 120 |
+
lookup.add(
|
| 121 |
+
(
|
| 122 |
+
"Animalia",
|
| 123 |
+
"Chordata",
|
| 124 |
+
"Aves",
|
| 125 |
+
"Strigiformes",
|
| 126 |
+
"Strigidae",
|
| 127 |
+
"Ninox",
|
| 128 |
+
"plesseni",
|
| 129 |
+
)
|
| 130 |
+
)
|
| 131 |
+
lookup.add(
|
| 132 |
+
(
|
| 133 |
+
"Animalia",
|
| 134 |
+
"Chordata",
|
| 135 |
+
"Mammalia",
|
| 136 |
+
"Primates",
|
| 137 |
+
"Hominidae",
|
| 138 |
+
"Gorilla",
|
| 139 |
+
"gorilla",
|
| 140 |
+
)
|
| 141 |
+
)
|
| 142 |
+
lookup.add(
|
| 143 |
+
(
|
| 144 |
+
"Animalia",
|
| 145 |
+
"Arthropoda",
|
| 146 |
+
"Insecta",
|
| 147 |
+
"Hymenoptera",
|
| 148 |
+
"Apidae",
|
| 149 |
+
"Bombus",
|
| 150 |
+
"balteatus",
|
| 151 |
+
)
|
| 152 |
+
)
|
| 153 |
+
|
| 154 |
+
actual = lookup.children(("Animalia",))
|
| 155 |
+
expected = set([("Chordata", 1), ("Arthropoda", 17)])
|
| 156 |
+
assert actual == expected
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
def test_taxonomiclookup_children_of_chordata():
|
| 160 |
+
lookup = lib.TaxonomicTree()
|
| 161 |
+
|
| 162 |
+
lookup.add(
|
| 163 |
+
(
|
| 164 |
+
"Animalia",
|
| 165 |
+
"Chordata",
|
| 166 |
+
"Aves",
|
| 167 |
+
"Accipitriformes",
|
| 168 |
+
"Accipitridae",
|
| 169 |
+
"Halieaeetus",
|
| 170 |
+
"leucocephalus",
|
| 171 |
+
)
|
| 172 |
+
)
|
| 173 |
+
lookup.add(
|
| 174 |
+
(
|
| 175 |
+
"Animalia",
|
| 176 |
+
"Chordata",
|
| 177 |
+
"Aves",
|
| 178 |
+
"Strigiformes",
|
| 179 |
+
"Strigidae",
|
| 180 |
+
"Ninox",
|
| 181 |
+
"scutulata",
|
| 182 |
+
)
|
| 183 |
+
)
|
| 184 |
+
lookup.add(
|
| 185 |
+
(
|
| 186 |
+
"Animalia",
|
| 187 |
+
"Chordata",
|
| 188 |
+
"Aves",
|
| 189 |
+
"Strigiformes",
|
| 190 |
+
"Strigidae",
|
| 191 |
+
"Ninox",
|
| 192 |
+
"plesseni",
|
| 193 |
+
)
|
| 194 |
+
)
|
| 195 |
+
lookup.add(
|
| 196 |
+
(
|
| 197 |
+
"Animalia",
|
| 198 |
+
"Chordata",
|
| 199 |
+
"Mammalia",
|
| 200 |
+
"Primates",
|
| 201 |
+
"Hominidae",
|
| 202 |
+
"Gorilla",
|
| 203 |
+
"gorilla",
|
| 204 |
+
)
|
| 205 |
+
)
|
| 206 |
+
lookup.add(
|
| 207 |
+
(
|
| 208 |
+
"Animalia",
|
| 209 |
+
"Arthropoda",
|
| 210 |
+
"Insecta",
|
| 211 |
+
"Hymenoptera",
|
| 212 |
+
"Apidae",
|
| 213 |
+
"Bombus",
|
| 214 |
+
"balteatus",
|
| 215 |
+
)
|
| 216 |
+
)
|
| 217 |
+
|
| 218 |
+
actual = lookup.children(("Animalia", "Chordata"))
|
| 219 |
+
expected = set([("Aves", 2), ("Mammalia", 12)])
|
| 220 |
+
assert actual == expected
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
def test_taxonomiclookup_children_of_strigiformes():
|
| 224 |
+
lookup = lib.TaxonomicTree()
|
| 225 |
+
|
| 226 |
+
lookup.add(
|
| 227 |
+
(
|
| 228 |
+
"Animalia",
|
| 229 |
+
"Chordata",
|
| 230 |
+
"Aves",
|
| 231 |
+
"Accipitriformes",
|
| 232 |
+
"Accipitridae",
|
| 233 |
+
"Halieaeetus",
|
| 234 |
+
"leucocephalus",
|
| 235 |
+
)
|
| 236 |
+
)
|
| 237 |
+
lookup.add(
|
| 238 |
+
(
|
| 239 |
+
"Animalia",
|
| 240 |
+
"Chordata",
|
| 241 |
+
"Aves",
|
| 242 |
+
"Strigiformes",
|
| 243 |
+
"Strigidae",
|
| 244 |
+
"Ninox",
|
| 245 |
+
"scutulata",
|
| 246 |
+
)
|
| 247 |
+
)
|
| 248 |
+
lookup.add(
|
| 249 |
+
(
|
| 250 |
+
"Animalia",
|
| 251 |
+
"Chordata",
|
| 252 |
+
"Aves",
|
| 253 |
+
"Strigiformes",
|
| 254 |
+
"Strigidae",
|
| 255 |
+
"Ninox",
|
| 256 |
+
"plesseni",
|
| 257 |
+
)
|
| 258 |
+
)
|
| 259 |
+
lookup.add(
|
| 260 |
+
(
|
| 261 |
+
"Animalia",
|
| 262 |
+
"Chordata",
|
| 263 |
+
"Mammalia",
|
| 264 |
+
"Primates",
|
| 265 |
+
"Hominidae",
|
| 266 |
+
"Gorilla",
|
| 267 |
+
"gorilla",
|
| 268 |
+
)
|
| 269 |
+
)
|
| 270 |
+
lookup.add(
|
| 271 |
+
(
|
| 272 |
+
"Animalia",
|
| 273 |
+
"Arthropoda",
|
| 274 |
+
"Insecta",
|
| 275 |
+
"Hymenoptera",
|
| 276 |
+
"Apidae",
|
| 277 |
+
"Bombus",
|
| 278 |
+
"balteatus",
|
| 279 |
+
)
|
| 280 |
+
)
|
| 281 |
+
|
| 282 |
+
actual = lookup.children(("Animalia", "Chordata", "Aves", "Strigiformes"))
|
| 283 |
+
expected = set([("Strigidae", 8)])
|
| 284 |
+
assert actual == expected
|
| 285 |
+
|
| 286 |
+
|
| 287 |
+
def test_taxonomiclookup_children_of_ninox():
|
| 288 |
+
lookup = lib.TaxonomicTree()
|
| 289 |
+
|
| 290 |
+
lookup.add(
|
| 291 |
+
(
|
| 292 |
+
"Animalia",
|
| 293 |
+
"Chordata",
|
| 294 |
+
"Aves",
|
| 295 |
+
"Accipitriformes",
|
| 296 |
+
"Accipitridae",
|
| 297 |
+
"Halieaeetus",
|
| 298 |
+
"leucocephalus",
|
| 299 |
+
)
|
| 300 |
+
)
|
| 301 |
+
lookup.add(
|
| 302 |
+
(
|
| 303 |
+
"Animalia",
|
| 304 |
+
"Chordata",
|
| 305 |
+
"Aves",
|
| 306 |
+
"Strigiformes",
|
| 307 |
+
"Strigidae",
|
| 308 |
+
"Ninox",
|
| 309 |
+
"scutulata",
|
| 310 |
+
)
|
| 311 |
+
)
|
| 312 |
+
lookup.add(
|
| 313 |
+
(
|
| 314 |
+
"Animalia",
|
| 315 |
+
"Chordata",
|
| 316 |
+
"Aves",
|
| 317 |
+
"Strigiformes",
|
| 318 |
+
"Strigidae",
|
| 319 |
+
"Ninox",
|
| 320 |
+
"plesseni",
|
| 321 |
+
)
|
| 322 |
+
)
|
| 323 |
+
lookup.add(
|
| 324 |
+
(
|
| 325 |
+
"Animalia",
|
| 326 |
+
"Chordata",
|
| 327 |
+
"Mammalia",
|
| 328 |
+
"Primates",
|
| 329 |
+
"Hominidae",
|
| 330 |
+
"Gorilla",
|
| 331 |
+
"gorilla",
|
| 332 |
+
)
|
| 333 |
+
)
|
| 334 |
+
lookup.add(
|
| 335 |
+
(
|
| 336 |
+
"Animalia",
|
| 337 |
+
"Arthropoda",
|
| 338 |
+
"Insecta",
|
| 339 |
+
"Hymenoptera",
|
| 340 |
+
"Apidae",
|
| 341 |
+
"Bombus",
|
| 342 |
+
"balteatus",
|
| 343 |
+
)
|
| 344 |
+
)
|
| 345 |
+
|
| 346 |
+
actual = lookup.children(
|
| 347 |
+
("Animalia", "Chordata", "Aves", "Strigiformes", "Strigidae", "Ninox")
|
| 348 |
+
)
|
| 349 |
+
expected = set([("scutulata", 10), ("plesseni", 11)])
|
| 350 |
+
assert actual == expected
|
| 351 |
+
|
| 352 |
+
|
| 353 |
+
def test_taxonomiclookup_children_of_gorilla():
|
| 354 |
+
lookup = lib.TaxonomicTree()
|
| 355 |
+
|
| 356 |
+
lookup.add(
|
| 357 |
+
(
|
| 358 |
+
"Animalia",
|
| 359 |
+
"Chordata",
|
| 360 |
+
"Aves",
|
| 361 |
+
"Accipitriformes",
|
| 362 |
+
"Accipitridae",
|
| 363 |
+
"Halieaeetus",
|
| 364 |
+
"leucocephalus",
|
| 365 |
+
)
|
| 366 |
+
)
|
| 367 |
+
lookup.add(
|
| 368 |
+
(
|
| 369 |
+
"Animalia",
|
| 370 |
+
"Chordata",
|
| 371 |
+
"Aves",
|
| 372 |
+
"Strigiformes",
|
| 373 |
+
"Strigidae",
|
| 374 |
+
"Ninox",
|
| 375 |
+
"scutulata",
|
| 376 |
+
)
|
| 377 |
+
)
|
| 378 |
+
lookup.add(
|
| 379 |
+
(
|
| 380 |
+
"Animalia",
|
| 381 |
+
"Chordata",
|
| 382 |
+
"Aves",
|
| 383 |
+
"Strigiformes",
|
| 384 |
+
"Strigidae",
|
| 385 |
+
"Ninox",
|
| 386 |
+
"plesseni",
|
| 387 |
+
)
|
| 388 |
+
)
|
| 389 |
+
lookup.add(
|
| 390 |
+
(
|
| 391 |
+
"Animalia",
|
| 392 |
+
"Chordata",
|
| 393 |
+
"Mammalia",
|
| 394 |
+
"Primates",
|
| 395 |
+
"Hominidae",
|
| 396 |
+
"Gorilla",
|
| 397 |
+
"gorilla",
|
| 398 |
+
)
|
| 399 |
+
)
|
| 400 |
+
lookup.add(
|
| 401 |
+
(
|
| 402 |
+
"Animalia",
|
| 403 |
+
"Arthropoda",
|
| 404 |
+
"Insecta",
|
| 405 |
+
"Hymenoptera",
|
| 406 |
+
"Apidae",
|
| 407 |
+
"Bombus",
|
| 408 |
+
"balteatus",
|
| 409 |
+
)
|
| 410 |
+
)
|
| 411 |
+
|
| 412 |
+
actual = lookup.children(
|
| 413 |
+
(
|
| 414 |
+
"Animalia",
|
| 415 |
+
"Chordata",
|
| 416 |
+
"Mammalia",
|
| 417 |
+
"Primates",
|
| 418 |
+
"Hominidae",
|
| 419 |
+
"Gorilla",
|
| 420 |
+
"gorilla",
|
| 421 |
+
)
|
| 422 |
+
)
|
| 423 |
+
expected = set()
|
| 424 |
+
assert actual == expected
|