Spaces:
Sleeping
Sleeping
| import cv2 | |
| import numpy as np | |
| from registry import registry | |
| def original(image): | |
| return image | |
| def dot_effect(image, dot_size: int = 10, dot_spacing: int = 2, invert: bool = False): | |
| """ | |
| ## Convert your image into a dotted pattern. | |
| **Args:** | |
| * `image` (numpy.ndarray): Input image (BGR or grayscale) | |
| * `dot_size` (int): Size of each dot | |
| * `dot_spacing` (int): Spacing between dots | |
| * `invert` (bool): Invert the dots | |
| **Returns:** | |
| * `numpy.ndarray`: Dotted image | |
| """ | |
| # Convert to grayscale if image is color | |
| if len(image.shape) == 3: | |
| gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |
| else: | |
| gray = image | |
| # Apply adaptive thresholding to improve contrast | |
| gray = cv2.adaptiveThreshold( | |
| gray, | |
| 255, | |
| cv2.ADAPTIVE_THRESH_GAUSSIAN_C, | |
| cv2.THRESH_BINARY, | |
| 25, # Block size | |
| 5 # Constant subtracted from mean | |
| ) | |
| height, width = gray.shape | |
| canvas = np.zeros_like(gray) if not invert else np.full_like(gray, 255) | |
| y_dots = range(0, height, dot_size + dot_spacing) | |
| x_dots = range(0, width, dot_size + dot_spacing) | |
| dot_color = 255 if not invert else 0 | |
| for y in y_dots: | |
| for x in x_dots: | |
| region = gray[y:min(y+dot_size, height), x:min(x+dot_size, width)] | |
| if region.size > 0: | |
| brightness = np.mean(region) | |
| # Dynamic dot sizing based on brightness | |
| relative_brightness = brightness / 255.0 | |
| if invert: | |
| relative_brightness = 1 - relative_brightness | |
| # Draw circle with size proportional to brightness | |
| radius = int((dot_size/2) * relative_brightness) | |
| if radius > 0: | |
| cv2.circle(canvas, | |
| (x + dot_size//2, y + dot_size//2), | |
| radius, | |
| (dot_color), | |
| -1) | |
| return canvas | |
| def pixelize(image, pixel_size: int = 10): | |
| """ | |
| ## Apply a pixelization effect to the image. | |
| **Args:** | |
| * `image` (numpy.ndarray): Input image (BGR or grayscale) | |
| * `pixel_size` (int): Size of each pixel block | |
| **Returns:** | |
| * `numpy.ndarray`: Pixelized image | |
| """ | |
| height, width = image.shape[:2] | |
| # Resize the image to a smaller size | |
| small_height = height // pixel_size | |
| small_width = width // pixel_size | |
| small_image = cv2.resize( | |
| image, (small_width, small_height), interpolation=cv2.INTER_LINEAR) | |
| # Resize back to the original size with nearest neighbor interpolation | |
| pixelized_image = cv2.resize( | |
| small_image, (width, height), interpolation=cv2.INTER_NEAREST) | |
| return pixelized_image | |
| def sketch_effect(image): | |
| """ | |
| ## Apply a sketch effect to the image. | |
| **Args:** | |
| * `image` (numpy.ndarray): Input image (BGR or grayscale) | |
| **Returns:** | |
| * `numpy.ndarray`: Sketch effect applied image | |
| """ | |
| # Convert the image to grayscale | |
| if len(image.shape) == 3: | |
| gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |
| else: | |
| gray = image | |
| # Invert the grayscale image | |
| inverted_gray = cv2.bitwise_not(gray) | |
| # Apply Gaussian blur to the inverted image | |
| blurred = cv2.GaussianBlur(inverted_gray, (21, 21), 0) # Fixed kernel size | |
| # Blend the grayscale image with the blurred inverted image | |
| sketch = cv2.divide(gray, 255 - blurred, scale=256) | |
| return sketch | |
| def warm_filter(image, intensity: int = 30): | |
| """ | |
| ## Adds a warm color effect to the image. | |
| **Args:** | |
| * `image` (numpy.ndarray): Input image (BGR) | |
| * `intensity` (int): Intensity of the warm effect (0-100) | |
| **Returns:** | |
| * `numpy.ndarray`: Image with warm color effect | |
| """ | |
| # Convert intensity to actual adjustment values | |
| intensity_scale = intensity / 100.0 | |
| # Split the image into BGR channels | |
| b, g, r = cv2.split(image.astype(np.float32)) | |
| # Increase red, slightly increase green, decrease blue | |
| r = np.clip(r * (1 + 0.5 * intensity_scale), 0, 255) | |
| g = np.clip(g * (1 + 0.1 * intensity_scale), 0, 255) | |
| b = np.clip(b * (1 - 0.1 * intensity_scale), 0, 255) | |
| return cv2.merge([b, g, r]).astype(np.uint8) | |
| def cool_filter(image, intensity: int = 30): | |
| """ | |
| ## Adds a cool color effect to the image. | |
| **Args:** | |
| * `image` (numpy.ndarray): Input image (BGR) | |
| * `intensity` (int): Intensity of the cool effect (0-100) | |
| **Returns:** | |
| * `numpy.ndarray`: Image with cool color effect | |
| """ | |
| # Convert intensity to actual adjustment values | |
| intensity_scale = intensity / 100.0 | |
| # Split the image into BGR channels | |
| b, g, r = cv2.split(image.astype(np.float32)) | |
| # Increase blue, slightly increase green, decrease red | |
| b = np.clip(b * (1 + 0.5 * intensity_scale), 0, 255) | |
| g = np.clip(g * (1 + 0.1 * intensity_scale), 0, 255) | |
| r = np.clip(r * (1 - 0.1 * intensity_scale), 0, 255) | |
| return cv2.merge([b, g, r]).astype(np.uint8) | |
| def adjust_saturation(image, factor: int = 50): | |
| """ | |
| ## Adjusts the saturation of the image. | |
| **Args:** | |
| * `image` (numpy.ndarray): Input image (BGR) | |
| * `factor` (int): Saturation factor (0-100, 50 is normal) | |
| **Returns:** | |
| * `numpy.ndarray`: Image with adjusted saturation | |
| """ | |
| # Convert factor to multiplication value (0.0 to 2.0) | |
| factor = (factor / 50.0) | |
| # Convert to HSV | |
| hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV).astype(np.float32) | |
| # Adjust saturation | |
| hsv[:, :, 1] = np.clip(hsv[:, :, 1] * factor, 0, 255) | |
| # Convert back to BGR | |
| return cv2.cvtColor(hsv.astype(np.uint8), cv2.COLOR_HSV2BGR) | |
| def vintage_filter(image, intensity: int = 50): | |
| """ | |
| ## Adds a vintage/retro effect to the image. | |
| **Args:** | |
| * `image` (numpy.ndarray): Input image (BGR) | |
| * `intensity` (int): Intensity of the vintage effect (0-100) | |
| **Returns:** | |
| * `numpy.ndarray`: Image with vintage effect | |
| """ | |
| intensity_scale = intensity / 100.0 | |
| # Split channels | |
| b, g, r = cv2.split(image.astype(np.float32)) | |
| # Adjust colors for vintage look | |
| r = np.clip(r * (1 + 0.3 * intensity_scale), 0, 255) | |
| g = np.clip(g * (1 - 0.1 * intensity_scale), 0, 255) | |
| b = np.clip(b * (1 - 0.2 * intensity_scale), 0, 255) | |
| # Create sepia-like effect | |
| result = cv2.merge([b, g, r]).astype(np.uint8) | |
| # Add slight blur for softness | |
| if intensity > 0: | |
| blur_amount = int(3 * intensity_scale) * 2 + 1 | |
| result = cv2.GaussianBlur(result, (blur_amount, blur_amount), 0) | |
| return result | |
| def vignette_effect(image, intensity: int = 50): | |
| """ | |
| ## Adds a vignette effect (darker corners) to the image. | |
| **Args:** | |
| * `image` (numpy.ndarray): Input image (BGR) | |
| * `intensity` (int): Intensity of the vignette (0-100) | |
| **Returns:** | |
| * `numpy.ndarray`: Image with vignette effect | |
| """ | |
| height, width = image.shape[:2] | |
| # Create a vignette mask | |
| X_resultant = np.abs(np.linspace(-1, 1, width)[None, :]) | |
| Y_resultant = np.abs(np.linspace(-1, 1, height)[:, None]) | |
| mask = np.sqrt(X_resultant**2 + Y_resultant**2) | |
| mask = 1 - np.clip(mask, 0, 1) | |
| # Adjust mask based on intensity | |
| mask = (mask - mask.min()) / (mask.max() - mask.min()) | |
| mask = mask ** (1 + intensity/50) | |
| # Apply mask to image | |
| mask = mask[:, :, None] | |
| result = image.astype(np.float32) * mask | |
| return np.clip(result, 0, 255).astype(np.uint8) | |
| def hdr_effect(image, strength: int = 50): | |
| """ | |
| ## Applies an HDR-like effect to enhance image details. | |
| **Args:** | |
| * `image` (numpy.ndarray): Input image (BGR) | |
| * `strength` (int): Strength of the HDR effect (0-100) | |
| **Returns:** | |
| * `numpy.ndarray`: Image with HDR-like effect | |
| """ | |
| strength_scale = strength / 100.0 | |
| # Convert to LAB color space | |
| lab = cv2.cvtColor(image, cv2.COLOR_BGR2LAB).astype(np.float32) | |
| # Split channels | |
| l, a, b = cv2.split(lab) | |
| # Apply CLAHE to L channel | |
| clahe = cv2.createCLAHE( | |
| clipLimit=3.0 * strength_scale, tileGridSize=(8, 8)) | |
| l = clahe.apply(l.astype(np.uint8)).astype(np.float32) | |
| # Enhance local contrast | |
| if strength > 0: | |
| blur = cv2.GaussianBlur(l, (0, 0), 3) | |
| detail = cv2.addWeighted( | |
| l, 1 + strength_scale, blur, -strength_scale, 0) | |
| l = cv2.addWeighted(l, 1 - strength_scale/2, | |
| detail, strength_scale/2, 0) | |
| # Merge channels and convert back | |
| enhanced_lab = cv2.merge([l, a, b]) | |
| result = cv2.cvtColor(enhanced_lab.astype(np.uint8), cv2.COLOR_LAB2BGR) | |
| return result | |
| def gaussian_blur(image, kernel_size: int = 5): | |
| """ | |
| ## Apply Gaussian blur effect to the image. | |
| **Args:** | |
| * `image` (numpy.ndarray): Input image (BGR) | |
| * `kernel_size` (int): Size of the Gaussian kernel (must be odd) | |
| **Returns:** | |
| * `numpy.ndarray`: Blurred image | |
| """ | |
| # Ensure kernel size is odd | |
| if kernel_size % 2 == 0: | |
| kernel_size += 1 | |
| return cv2.GaussianBlur(image, (kernel_size, kernel_size), 0) | |
| def sharpen(image, amount: int = 50): | |
| """ | |
| ## Sharpen the image. | |
| **Args:** | |
| * `image` (numpy.ndarray): Input image (BGR) | |
| * `amount` (int): Sharpening intensity (0-100) | |
| **Returns:** | |
| * `numpy.ndarray`: Sharpened image | |
| """ | |
| amount = amount / 100.0 | |
| # Create the sharpening kernel | |
| kernel = np.array([[-1, -1, -1], | |
| [-1, 9, -1], | |
| [-1, -1, -1]]) | |
| # Apply the kernel | |
| sharpened = cv2.filter2D(image, -1, kernel) | |
| # Blend with original image based on amount | |
| return cv2.addWeighted(image, 1 - amount, sharpened, amount, 0) | |
| def emboss(image, strength: int = 50, direction: int = 0): | |
| """ | |
| ## Apply emboss effect to create a 3D look. | |
| **Args:** | |
| * `image` (numpy.ndarray): Input image (BGR) | |
| * `strength` (int): Emboss strength (0-100) | |
| * `direction` (int): Direction of emboss effect (0-7) | |
| **Returns:** | |
| * `numpy.ndarray`: Embossed image | |
| """ | |
| strength = strength / 100.0 * 2.0 # Scale to 0-2 range | |
| # Define kernels for different directions | |
| kernels = [ | |
| np.array([[-1, -1, 0], | |
| [-1, 1, 1], | |
| [0, 1, 1]]), # 0 - top left to bottom right | |
| np.array([[-1, 0, 1], | |
| [-1, 1, 1], | |
| [-1, 0, 1]]), # 1 - left to right | |
| np.array([[0, 1, 1], | |
| [-1, 1, 1], | |
| [-1, -1, 0]]), # 2 - bottom left to top right | |
| np.array([[1, 1, 1], | |
| [0, 1, 0], | |
| [-1, -1, -1]]), # 3 - bottom to top | |
| np.array([[1, 1, 0], | |
| [1, 1, -1], | |
| [0, -1, -1]]), # 4 - bottom right to top left | |
| np.array([[1, 0, -1], | |
| [1, 1, -1], | |
| [1, 0, -1]]), # 5 - right to left | |
| np.array([[0, -1, -1], | |
| [1, 1, -1], | |
| [1, 1, 0]]), # 6 - top right to bottom left | |
| np.array([[-1, -1, -1], | |
| [0, 1, 0], | |
| [1, 1, 1]]) # 7 - top to bottom | |
| ] | |
| # Apply the kernel | |
| kernel = kernels[direction % 8] | |
| gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |
| embossed = cv2.filter2D(gray, -1, kernel * strength) | |
| # Normalize to ensure good contrast | |
| embossed = cv2.normalize(embossed, None, 0, 255, cv2.NORM_MINMAX) | |
| # Convert back to BGR | |
| return cv2.cvtColor(embossed.astype(np.uint8), cv2.COLOR_GRAY2BGR) | |
| def oil_painting(image, size: int = 5, dynRatio: int = 1): | |
| """ | |
| ## Apply oil painting effect to the image. | |
| **Args:** | |
| * `image` (numpy.ndarray): Input image (BGR) | |
| * `size` (int): Size of the neighborhood considered | |
| * `dynRatio` (int): Dynamic ratio affecting the intensity binning | |
| **Returns:** | |
| * `numpy.ndarray`: Image with oil painting effect | |
| """ | |
| return cv2.xphoto.oilPainting(image, size, dynRatio) | |
| def black_and_white(image): | |
| """ | |
| ## Convert image to classic black and white. | |
| **Args:** | |
| * `image` (numpy.ndarray): Input image (BGR) | |
| **Returns:** | |
| * `numpy.ndarray`: Grayscale image | |
| """ | |
| return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |
| def sepia(image): | |
| """ | |
| ## Apply a warm sepia tone effect. | |
| **Args:** | |
| * `image` (numpy.ndarray): Input image (BGR) | |
| **Returns:** | |
| * `numpy.ndarray`: Sepia toned image | |
| """ | |
| # Convert to RGB | |
| rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
| # Apply sepia matrix | |
| sepia_matrix = np.array([ | |
| [0.393, 0.769, 0.189], | |
| [0.349, 0.686, 0.168], | |
| [0.272, 0.534, 0.131] | |
| ]) | |
| sepia_image = np.dot(rgb, sepia_matrix.T) | |
| sepia_image = np.clip(sepia_image, 0, 255) | |
| return cv2.cvtColor(sepia_image.astype(np.uint8), cv2.COLOR_RGB2BGR) | |
| def negative(image): | |
| """ | |
| ## Invert colors to create a negative effect. | |
| **Args:** | |
| * `image` (numpy.ndarray): Input image (BGR) | |
| **Returns:** | |
| * `numpy.ndarray`: Negative image | |
| """ | |
| return cv2.bitwise_not(image) | |
| def watercolor(image): | |
| """ | |
| ## Apply a watercolor painting effect. | |
| **Args:** | |
| * `image` (numpy.ndarray): Input image (BGR) | |
| **Returns:** | |
| * `numpy.ndarray`: Watercolor effect image | |
| """ | |
| # Apply bilateral filter to create watercolor effect | |
| return cv2.xphoto.oilPainting(image, 7, 1) | |
| def posterize(image): | |
| """ | |
| ## Reduce colors to create a posterization effect. | |
| **Args:** | |
| * `image` (numpy.ndarray): Input image (BGR) | |
| **Returns:** | |
| * `numpy.ndarray`: Posterized image | |
| """ | |
| # Convert to HSV | |
| hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) | |
| # Reduce color levels | |
| hsv[:, :, 1] = cv2.equalizeHist(hsv[:, :, 1]) | |
| hsv[:, :, 2] = cv2.equalizeHist(hsv[:, :, 2]) | |
| # Convert back to BGR | |
| return cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR) | |
| def cross_process(image): | |
| """ | |
| ## Apply a film cross-processing effect. | |
| **Args:** | |
| * `image` (numpy.ndarray): Input image (BGR) | |
| **Returns:** | |
| * `numpy.ndarray`: Cross-processed image | |
| """ | |
| # Split channels | |
| b, g, r = cv2.split(image.astype(np.float32)) | |
| # Apply cross-process transformation | |
| b = np.clip(b * 1.2, 0, 255) | |
| g = np.clip(g * 0.8, 0, 255) | |
| r = np.clip(r * 1.4, 0, 255) | |
| return cv2.merge([b, g, r]).astype(np.uint8) | |