enacimie commited on
Commit
5666118
·
verified ·
1 Parent(s): ace218c

Update src/streamlit_app.py

Browse files
Files changed (1) hide show
  1. src/streamlit_app.py +397 -38
src/streamlit_app.py CHANGED
@@ -1,40 +1,399 @@
1
- import altair as alt
2
- import numpy as np
3
- import pandas as pd
4
  import streamlit as st
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
- """
7
- # Welcome to Streamlit!
8
-
9
- Edit `/streamlit_app.py` to customize this app to your heart's desire :heart:.
10
- If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
11
- forums](https://discuss.streamlit.io).
12
-
13
- In the meantime, below is an example of what you can do with just a few lines of code:
14
- """
15
-
16
- num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
17
- num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
18
-
19
- indices = np.linspace(0, 1, num_points)
20
- theta = 2 * np.pi * num_turns * indices
21
- radius = indices
22
-
23
- x = radius * np.cos(theta)
24
- y = radius * np.sin(theta)
25
-
26
- df = pd.DataFrame({
27
- "x": x,
28
- "y": y,
29
- "idx": indices,
30
- "rand": np.random.randn(num_points),
31
- })
32
-
33
- st.altair_chart(alt.Chart(df, height=700, width=700)
34
- .mark_point(filled=True)
35
- .encode(
36
- x=alt.X("x", axis=None),
37
- y=alt.Y("y", axis=None),
38
- color=alt.Color("idx", legend=None, scale=alt.Scale()),
39
- size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
40
- ))
 
 
 
 
1
  import streamlit as st
2
+ import pandas as pd
3
+ import numpy as np
4
+ import plotly.express as px
5
+ import plotly.graph_objects as go
6
+ import plotly.io as pio
7
+ from plotly.subplots import make_subplots
8
+ import io
9
+
10
+ # Metadata
11
+ AUTHOR = "Eduardo Nacimiento García"
12
+ EMAIL = "[email protected]"
13
+ LICENSE = "Apache 2.0"
14
+
15
+ # Page config
16
+ st.set_page_config(
17
+ page_title="SimpleViz",
18
+ page_icon="🎨",
19
+ layout="wide",
20
+ initial_sidebar_state="expanded",
21
+ )
22
+
23
+ # Title
24
+ st.title("🎨 SimpleViz")
25
+ st.markdown(f"**Author:** {AUTHOR} | **Email:** {EMAIL} | **License:** {LICENSE}")
26
+ st.write("""
27
+ Upload a CSV or use the demo dataset to create beautiful, interactive visualizations in seconds.
28
+ """)
29
+
30
+ # === GENERATE DEMO DATASET ===
31
+ @st.cache_data
32
+ def create_demo_data():
33
+ np.random.seed(42)
34
+ n = 500
35
+ data = {
36
+ "Age": np.random.normal(35, 12, n).astype(int),
37
+ "Income": np.random.normal(45000, 15000, n),
38
+ "Satisfaction": np.random.randint(1, 11, n),
39
+ "City": np.random.choice(["Madrid", "Barcelona", "Valencia", "Seville"], n),
40
+ "Gender": np.random.choice(["M", "F"], n, p=[0.6, 0.4]),
41
+ "Purchase": np.random.choice([0, 1], n, p=[0.7, 0.3]),
42
+ "Date": pd.date_range(start="2023-01-01", periods=n, freq="D")
43
+ }
44
+ df = pd.DataFrame(data)
45
+ # Introduce some nulls for realism
46
+ df.loc[np.random.choice(df.index, 15), "Income"] = np.nan
47
+ return df
48
+
49
+ # === LOAD DATA ===
50
+ if st.button("🧪 Load Demo Dataset"):
51
+ st.session_state['df'] = create_demo_data()
52
+ st.success("✅ Demo dataset loaded!")
53
+
54
+ uploaded_file = st.file_uploader("📂 Upload your CSV file", type=["csv"])
55
+
56
+ if uploaded_file:
57
+ df = pd.read_csv(uploaded_file)
58
+ st.session_state['df'] = df
59
+ st.success("✅ File uploaded successfully.")
60
+
61
+ if 'df' not in st.session_state:
62
+ st.info("👆 Upload a CSV or click 'Load Demo Dataset' to begin.")
63
+ st.stop()
64
+
65
+ df = st.session_state['df']
66
+
67
+ # Show data preview
68
+ with st.expander("🔍 Data Preview (first 10 rows)"):
69
+ st.dataframe(df.head(10))
70
+
71
+ # Basic info
72
+ st.subheader("📌 Dataset Info")
73
+ col1, col2, col3 = st.columns(3)
74
+ col1.metric("Rows", df.shape[0])
75
+ col2.metric("Columns", df.shape[1])
76
+ col3.metric("Missing Values", df.isnull().sum().sum())
77
+
78
+ # === AUTO-VISUALIZATION RECOMMENDATIONS ===
79
+ st.header("✨ Smart Visualization Suggestions")
80
+
81
+ numeric_cols = df.select_dtypes(include=[np.number]).columns.tolist()
82
+ categorical_cols = df.select_dtypes(include=['object', 'category']).columns.tolist()
83
+ datetime_cols = df.select_dtypes(include=['datetime', 'datetime64']).columns.tolist()
84
+
85
+ if datetime_cols:
86
+ date_col = datetime_cols[0]
87
+ else:
88
+ date_col = None
89
+
90
+ # Suggest visualizations based on data types
91
+ suggestions = []
92
+
93
+ if len(numeric_cols) >= 2:
94
+ suggestions.append({
95
+ "name": "Scatter Plot",
96
+ "description": "Visualize relationship between two numeric variables",
97
+ "plot_type": "scatter",
98
+ "x": numeric_cols[0],
99
+ "y": numeric_cols[1] if len(numeric_cols) > 1 else numeric_cols[0]
100
+ })
101
+
102
+ if len(numeric_cols) >= 1:
103
+ suggestions.append({
104
+ "name": "Histogram",
105
+ "description": "Distribution of a numeric variable",
106
+ "plot_type": "histogram",
107
+ "x": numeric_cols[0]
108
+ })
109
+
110
+ if len(categorical_cols) >= 1 and len(numeric_cols) >= 1:
111
+ suggestions.append({
112
+ "name": "Bar Plot (Mean)",
113
+ "description": "Compare mean of numeric variable across categories",
114
+ "plot_type": "bar",
115
+ "x": categorical_cols[0],
116
+ "y": numeric_cols[0]
117
+ })
118
+
119
+ if len(categorical_cols) >= 2:
120
+ suggestions.append({
121
+ "name": "Stacked Bar Plot",
122
+ "description": "Relationship between two categorical variables",
123
+ "plot_type": "stacked_bar",
124
+ "x": categorical_cols[0],
125
+ "color": categorical_cols[1] if len(categorical_cols) > 1 else categorical_cols[0]
126
+ })
127
+
128
+ if date_col and len(numeric_cols) >= 1:
129
+ suggestions.append({
130
+ "name": "Time Series Line Plot",
131
+ "description": "Trend of numeric variable over time",
132
+ "plot_type": "line",
133
+ "x": date_col,
134
+ "y": numeric_cols[0]
135
+ })
136
+
137
+ if len(numeric_cols) >= 3:
138
+ suggestions.append({
139
+ "name": "Scatter Plot with Color",
140
+ "description": "Scatter plot with third variable as color",
141
+ "plot_type": "scatter_color",
142
+ "x": numeric_cols[0],
143
+ "y": numeric_cols[1],
144
+ "color": numeric_cols[2]
145
+ })
146
+
147
+ if len(numeric_cols) >= 2:
148
+ suggestions.append({
149
+ "name": "Box Plot",
150
+ "description": "Distribution and outliers of numeric variable by category",
151
+ "plot_type": "box",
152
+ "x": categorical_cols[0] if categorical_cols else None,
153
+ "y": numeric_cols[0]
154
+ })
155
+
156
+ if len(numeric_cols) >= 2:
157
+ suggestions.append({
158
+ "name": "Correlation Heatmap",
159
+ "description": "Correlation matrix of numeric variables",
160
+ "plot_type": "heatmap",
161
+ "cols": numeric_cols[:5] # Limit to 5 columns for readability
162
+ })
163
+
164
+ # Display suggestions
165
+ for i, suggestion in enumerate(suggestions):
166
+ with st.expander(f"🎨 Suggestion {i+1}: {suggestion['name']}"):
167
+ st.write(suggestion["description"])
168
+ if st.button(f"Create {suggestion['name']}", key=f"sug_{i}"):
169
+ st.session_state['selected_suggestion'] = suggestion
170
+
171
+ # === CUSTOM VISUALIZATION BUILDER ===
172
+ st.header("🛠️ Custom Visualization Builder")
173
+
174
+ plot_types = [
175
+ "Scatter Plot",
176
+ "Line Plot",
177
+ "Bar Plot",
178
+ "Histogram",
179
+ "Box Plot",
180
+ "Violin Plot",
181
+ "Pie Chart",
182
+ "Heatmap (Correlation)"
183
+ ]
184
+
185
+ selected_plot = st.selectbox("Choose plot type:", plot_types)
186
+
187
+ fig = None
188
+
189
+ if selected_plot == "Scatter Plot":
190
+ col1, col2 = st.columns(2)
191
+ with col1:
192
+ x_col = st.selectbox("X-axis:", numeric_cols)
193
+ with col2:
194
+ y_col = st.selectbox("Y-axis:", [col for col in numeric_cols if col != x_col] if len(numeric_cols) > 1 else numeric_cols)
195
+
196
+ color_col = st.selectbox("Color by (optional):", [None] + categorical_cols + numeric_cols, key="scatter_color")
197
+ size_col = st.selectbox("Size by (optional):", [None] + numeric_cols, key="scatter_size")
198
+
199
+ title = st.text_input("Plot title:", f"{y_col} vs {x_col}")
200
+
201
+ if st.button("Generate Scatter Plot"):
202
+ fig = px.scatter(df, x=x_col, y=y_col, color=color_col, size=size_col, title=title)
203
+
204
+ elif selected_plot == "Line Plot":
205
+ if not datetime_cols and not categorical_cols:
206
+ st.warning("No suitable columns for line plot. Need datetime or categorical x-axis.")
207
+ else:
208
+ available_x = datetime_cols + categorical_cols if datetime_cols else categorical_cols
209
+ col1, col2 = st.columns(2)
210
+ with col1:
211
+ x_col = st.selectbox("X-axis:", available_x)
212
+ with col2:
213
+ y_col = st.selectbox("Y-axis:", numeric_cols)
214
+
215
+ color_col = st.selectbox("Color by (optional):", [None] + categorical_cols, key="line_color")
216
+ title = st.text_input("Plot title:", f"{y_col} over {x_col}")
217
+
218
+ if st.button("Generate Line Plot"):
219
+ fig = px.line(df, x=x_col, y=y_col, color=color_col, title=title, markers=True)
220
+
221
+ elif selected_plot == "Bar Plot":
222
+ if not categorical_cols:
223
+ st.warning("No categorical columns available for bar plot.")
224
+ else:
225
+ col1, col2 = st.columns(2)
226
+ with col1:
227
+ x_col = st.selectbox("Category column:", categorical_cols)
228
+ with col2:
229
+ y_col = st.selectbox("Value column:", numeric_cols)
230
+
231
+ agg_func = st.selectbox("Aggregation:", ["Mean", "Sum", "Count", "Median"])
232
+ color_col = st.selectbox("Color by (optional):", [None] + categorical_cols, key="bar_color")
233
+ title = st.text_input("Plot title:", f"{agg_func} of {y_col} by {x_col}")
234
+
235
+ if st.button("Generate Bar Plot"):
236
+ if agg_func == "Mean":
237
+ fig = px.bar(df, x=x_col, y=y_col, color=color_col, title=title)
238
+ elif agg_func == "Sum":
239
+ fig_data = df.groupby(x_col)[y_col].sum().reset_index()
240
+ fig = px.bar(fig_data, x=x_col, y=y_col, color=color_col, title=title)
241
+ elif agg_func == "Count":
242
+ fig = px.histogram(df, x=x_col, color=color_col, title=title)
243
+ else: # Median
244
+ fig_data = df.groupby(x_col)[y_col].median().reset_index()
245
+ fig = px.bar(fig_data, x=x_col, y=y_col, color=color_col, title=title)
246
+
247
+ elif selected_plot == "Histogram":
248
+ if not numeric_cols:
249
+ st.warning("No numeric columns available for histogram.")
250
+ else:
251
+ col1, col2 = st.columns(2)
252
+ with col1:
253
+ x_col = st.selectbox("Variable:", numeric_cols)
254
+ with col2:
255
+ nbins = st.slider("Number of bins:", min_value=5, max_value=100, value=30)
256
+
257
+ color_col = st.selectbox("Color by (optional):", [None] + categorical_cols, key="hist_color")
258
+ title = st.text_input("Plot title:", f"Distribution of {x_col}")
259
+
260
+ if st.button("Generate Histogram"):
261
+ fig = px.histogram(df, x=x_col, nbins=nbins, color=color_col, title=title, marginal="box")
262
+
263
+ elif selected_plot == "Box Plot":
264
+ if not numeric_cols:
265
+ st.warning("No numeric columns available for box plot.")
266
+ else:
267
+ col1, col2 = st.columns(2)
268
+ with col1:
269
+ y_col = st.selectbox("Numeric variable:", numeric_cols)
270
+ with col2:
271
+ x_col = st.selectbox("Group by (optional):", [None] + categorical_cols)
272
+
273
+ title = st.text_input("Plot title:", f"Box plot of {y_col}" + (f" by {x_col}" if x_col else ""))
274
+
275
+ if st.button("Generate Box Plot"):
276
+ fig = px.box(df, x=x_col, y=y_col, title=title)
277
+
278
+ elif selected_plot == "Violin Plot":
279
+ if not numeric_cols:
280
+ st.warning("No numeric columns available for violin plot.")
281
+ else:
282
+ col1, col2 = st.columns(2)
283
+ with col1:
284
+ y_col = st.selectbox("Numeric variable:", numeric_cols)
285
+ with col2:
286
+ x_col = st.selectbox("Group by (optional):", [None] + categorical_cols)
287
+
288
+ title = st.text_input("Plot title:", f"Violin plot of {y_col}" + (f" by {x_col}" if x_col else ""))
289
+
290
+ if st.button("Generate Violin Plot"):
291
+ fig = px.violin(df, x=x_col, y=y_col, box=True, points="outliers", title=title)
292
+
293
+ elif selected_plot == "Pie Chart":
294
+ if not categorical_cols:
295
+ st.warning("No categorical columns available for pie chart.")
296
+ else:
297
+ col_to_plot = st.selectbox("Category column:", categorical_cols)
298
+ title = st.text_input("Plot title:", f"Distribution of {col_to_plot}")
299
+
300
+ if st.button("Generate Pie Chart"):
301
+ fig = px.pie(df, names=col_to_plot, title=title)
302
+
303
+ elif selected_plot == "Heatmap (Correlation)":
304
+ if len(numeric_cols) < 2:
305
+ st.warning("Need at least 2 numeric columns for correlation heatmap.")
306
+ else:
307
+ selected_cols = st.multiselect("Select columns for correlation:", numeric_cols, default=numeric_cols[:5] if len(numeric_cols) >= 5 else numeric_cols)
308
+
309
+ if len(selected_cols) < 2:
310
+ st.warning("Please select at least 2 columns.")
311
+ else:
312
+ title = st.text_input("Plot title:", "Correlation Heatmap")
313
+
314
+ if st.button("Generate Heatmap"):
315
+ corr_matrix = df[selected_cols].corr()
316
+ fig = px.imshow(corr_matrix,
317
+ text_auto=".2f",
318
+ aspect="auto",
319
+ title=title,
320
+ color_continuous_scale='RdBu_r',
321
+ labels=dict(color="Correlation"))
322
+
323
+ # Display and download plot
324
+ if fig:
325
+ st.plotly_chart(fig, use_container_width=True)
326
+
327
+ # Download options
328
+ st.subheader("💾 Download Plot")
329
+ col1, col2 = st.columns(2)
330
+
331
+ with col1:
332
+ png_data = fig.to_image(format="png", width=1200, height=800, scale=2)
333
+ st.download_button(
334
+ label="Download as PNG",
335
+ data=png_data,
336
+ file_name="plot.png",
337
+ mime="image/png"
338
+ )
339
+
340
+ with col2:
341
+ html_data = fig.to_html(include_plotlyjs="cdn")
342
+ st.download_button(
343
+ label="Download as HTML",
344
+ data=html_data,
345
+ file_name="plot.html",
346
+ mime="text/html"
347
+ )
348
+
349
+ # === MULTI-PLOT COMPARISON ===
350
+ st.header("⚖️ Compare Multiple Plots")
351
+
352
+ num_plots = st.slider("Number of plots to compare:", min_value=1, max_value=4, value=2)
353
+
354
+ if num_plots > 1:
355
+ fig_compare = make_subplots(
356
+ rows=1, cols=num_plots,
357
+ subplot_titles=[f"Plot {i+1}" for i in range(num_plots)],
358
+ shared_yaxes=False
359
+ )
360
+
361
+ plot_success = True
362
+
363
+ for i in range(num_plots):
364
+ st.markdown(f"### Plot {i+1}")
365
+ plot_type = st.selectbox(f"Plot type:", plot_types, key=f"compare_type_{i}")
366
+
367
+ try:
368
+ if plot_type == "Scatter Plot" and len(numeric_cols) >= 2:
369
+ x_col = st.selectbox(f"X-axis:", numeric_cols, key=f"compare_x_{i}")
370
+ y_col = st.selectbox(f"Y-axis:", [col for col in numeric_cols if col != x_col], key=f"compare_y_{i}")
371
+ trace = go.Scatter(x=df[x_col], y=df[y_col], mode='markers', name=f"{y_col} vs {x_col}")
372
+ fig_compare.add_trace(trace, row=1, col=i+1)
373
+
374
+ elif plot_type == "Histogram" and len(numeric_cols) >= 1:
375
+ x_col = st.selectbox(f"Variable:", numeric_cols, key=f"compare_hist_{i}")
376
+ trace = go.Histogram(x=df[x_col], name=f"Distribution of {x_col}")
377
+ fig_compare.add_trace(trace, row=1, col=i+1)
378
+
379
+ elif plot_type == "Bar Plot" and len(categorical_cols) >= 1 and len(numeric_cols) >= 1:
380
+ x_col = st.selectbox(f"Category:", categorical_cols, key=f"compare_bar_x_{i}")
381
+ y_col = st.selectbox(f"Value:", numeric_cols, key=f"compare_bar_y_{i}")
382
+ trace = go.Bar(x=df[x_col], y=df[y_col], name=f"{y_col} by {x_col}")
383
+ fig_compare.add_trace(trace, row=1, col=i+1)
384
+
385
+ else:
386
+ st.warning(f"Plot {i+1}: Invalid combination for {plot_type}")
387
+ plot_success = False
388
+
389
+ except Exception as e:
390
+ st.error(f"Error in Plot {i+1}: {e}")
391
+ plot_success = False
392
+
393
+ if plot_success and st.button("Generate Comparison Plot"):
394
+ fig_compare.update_layout(height=600, showlegend=True, title_text="Comparison of Multiple Plots")
395
+ st.plotly_chart(fig_compare, use_container_width=True)
396
 
397
+ # Footer
398
+ st.markdown("---")
399
+ st.caption(f"© {AUTHOR} | License {LICENSE} | Contact: {EMAIL}")