File size: 14,590 Bytes
530733d
a7aea10
 
530733d
 
 
a7aea10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
530733d
a7aea10
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
---
title: voyager
app_file: app.py
sdk: gradio
sdk_version: 5.49.1
---
[δΈ­ζ–‡ι˜…θ―»](README_zh.md)

# **HunyuanWorld-Voyager**

<p align="center">
  <img src="assets/teaser.png">
</p>

<div align="center">
  <a href="https://3d-models.hunyuan.tencent.com/world/" target="_blank"><img src="https://img.shields.io/static/v1?label=Project%20Page&message=Web&color=green" height=22px></a>
  <a href="https://3d-models.hunyuan.tencent.com/voyager/voyager_en/assets/HYWorld_Voyager.pdf" target="_blank"><img src="https://img.shields.io/static/v1?label=Tech%20Report&message=arxiv&color=red" height=22px></a>
  <a href="https://huggingface.co/tencent/HunyuanWorld-Voyager" target="_blank"><img src="https://img.shields.io/static/v1?label=HunyuanWorld-Voyager&message=HuggingFace&color=yellow" height=22px></a>
</div>

-----

We introduce HunyuanWorld-Voyager, a novel video diffusion framework that generates world-consistent 3D point-cloud sequences from a single image with user-defined camera path. Voyager can generate 3D-consistent scene videos for world exploration following custom camera trajectories. It can also generate aligned depth and RGB video for efficient and direct 3D reconstruction.


## πŸ”₯πŸ”₯πŸ”₯ News!!
* October 22, 2025: πŸ‘‹ We release [HunyuanWorld-1.1 (WorldMirror)](https://github.com/Tencent-Hunyuan/HunyuanWorld-Mirror), supporting 3D world creation from videos or multi-view images!
* October 16, 2025: πŸ‘‹ We recently propose  [FlashWorld](https://github.com/imlixinyang/FlashWorld), enabling 3DGS world generation in 5~10 seconds on a single GPU!
* Sep 2, 2025: πŸ‘‹ We release the code and model weights of HunyuanWorld-Voyager. [Download](ckpts/README.md).

> Join our **[Wechat](#)** and **[Discord](https://discord.gg/dNBrdrGGMa)** group to discuss and find help from us.

| Wechat Group                                     | Xiaohongshu                                           | X                                           | Discord                                           |
|--------------------------------------------------|-------------------------------------------------------|---------------------------------------------|---------------------------------------------------|
| <img src="assets/qrcode/wechat.png"  height=140> | <img src="assets/qrcode/xiaohongshu.png"  height=140> | <img src="assets/qrcode/x.png"  height=140> | <img src="assets/qrcode/discord.png"  height=140> | 

## πŸŽ₯ Demo
### Demo Video

<div align="center">
  <video src="https://github.com/user-attachments/assets/2eb844c9-30ba-4770-8066-189c123affee" width="80%" poster=""> </video>
</div>

### Camera-Controllable Video Generation

|  Input | Generated Video  |
|:----------------:|:----------------:|
|  <img src="assets/demo/camera/input1.png" width="80%">        |       <video src="https://github.com/user-attachments/assets/2b03ecd5-9a8f-455c-bf04-c668d3a61b04" width="100%"> </video>        |
| <img src="assets/demo/camera/input2.png" width="80%">         |       <video src="https://github.com/user-attachments/assets/45844ac0-c65a-4e04-9f7d-4c72d47e0339" width="100%"> </video>        | 
| <img src="assets/demo/camera/input3.png" width="80%">         |       <video src="https://github.com/user-attachments/assets/f7f48473-3bb5-4a30-bd22-af3ca95ee8dc" width="100%"> </video>        |

### Multiple Applications

- Video Reconstruction

| Generated Video | Reconstructed Point Cloud |
|:---------------:|:--------------------------------:|
| <video src="https://github.com/user-attachments/assets/72a41804-63fc-4596-963d-1497e68f7790" width="100%"> </video> | <video src="https://github.com/user-attachments/assets/67574e9c-9e21-4ed6-9503-e65d187086a2" width="100%"> </video> |

- Image-to-3D Generation

| | |
|:---------------:|:---------------:|
| <video src="https://github.com/user-attachments/assets/886aa86d-990e-4b86-97a5-0b9110862d14" width="100%"> </video> | <video src="https://github.com/user-attachments/assets/4c1734ba-4e78-4979-b30e-3c8c97aa984b" width="100%"> </video> |

- Video Depth Estimation

| | |
|:---------------:|:---------------:|
| <video src="https://github.com/user-attachments/assets/e4c8b729-e880-4be3-826f-429a5c1f12cd" width="100%"> </video> | <video src="https://github.com/user-attachments/assets/7ede0745-cde7-42f1-9c28-e4dca90dac52" width="100%"> </video> |


## ☯️ **HunyuanWorld-Voyager Introduction**
###  Architecture

Voyager consists of two key components:

(1) World-Consistent Video Diffusion: A unified architecture that jointly generates aligned RGB and depth video sequences, conditioned on existing world observation to ensure global coherence.

(2) Long-Range World Exploration: An efficient world cache with point culling and an auto-regressive inference with smooth video sampling for iterative scene extension with context-aware consistency.

To train Voyager, we propose a scalable data engine, i.e., a video reconstruction pipeline that automates camera pose estimation and metric depth prediction for arbitrary videos, enabling large-scale, diverse training data curation without manual 3D annotations. Using this pipeline, we compile a dataset of over 100,000 video clips, combining real-world captures and synthetic Unreal Engine renders.

<p align="center">
  <img src="assets/backbone.jpg"  height=500>
</p>

### Performance

<table class="comparison-table">
  <thead>
    <tr>
      <th>Method</th>
      <th>WorldScore Average</th>
      <th>Camera Control</th>
      <th>Object Control</th>
      <th>Content Alignment</th>
      <th>3D Consistency</th>
      <th>Photometric Consistency</th>
      <th>Style Consistency</th>
      <th>Subjective Quality</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td>WonderJourney</td>
      <td>🟑63.75</td>
      <td>🟑84.6</td>
      <td>37.1</td>
      <td>35.54</td>
      <td>80.6</td>
      <td>79.03</td>
      <td>62.82</td>
      <td>🟒66.56</td>
    </tr>
    <tr>
      <td>WonderWorld</td>
      <td>🟒72.69</td>
      <td>πŸ”΄92.98</td>
      <td>51.76</td>
      <td>πŸ”΄71.25</td>
      <td>πŸ”΄86.87</td>
      <td>85.56</td>
      <td>70.57</td>
      <td>49.81</td>
    </tr>
    <tr>
      <td>EasyAnimate</td>
      <td>52.85</td>
      <td>26.72</td>
      <td>54.5</td>
      <td>50.76</td>
      <td>67.29</td>
      <td>47.35</td>
      <td>🟑73.05</td>
      <td>50.31</td>
    </tr>
    <tr>
      <td>Allegro</td>
      <td>55.31</td>
      <td>24.84</td>
      <td>🟑57.47</td>
      <td>🟑51.48</td>
      <td>70.5</td>
      <td>69.89</td>
      <td>65.6</td>
      <td>47.41</td>
    </tr>
    <tr>
      <td>Gen-3</td>
      <td>60.71</td>
      <td>29.47</td>
      <td>🟒62.92</td>
      <td>50.49</td>
      <td>68.31</td>
      <td>🟒87.09</td>
      <td>62.82</td>
      <td>🟑63.85</td>
    </tr>
    <tr>
      <td>CogVideoX-I2V</td>
      <td>62.15</td>
      <td>38.27</td>
      <td>40.07</td>
      <td>36.73</td>
      <td>🟒86.21</td>
      <td>πŸ”΄88.12</td>
      <td>🟒83.22</td>
      <td>62.44</td>
    </tr>
    <tr class="voyager-row">
      <td><b>Voyager</b></td>
      <td>πŸ”΄77.62</td>
      <td>🟒85.95</td>
      <td>πŸ”΄66.92</td>
      <td>🟒68.92</td>
      <td>🟑81.56</td>
      <td>🟑85.99</td>
      <td>πŸ”΄84.89</td>
      <td>πŸ”΄71.09</td>
    </tr>
  </tbody>
  <caption>Quantitative comparison on <i>WorldScore Benchmark</i>. πŸ”΄ indicates the 1st, 🟒 indicates the 2nd, 🟑 indicates the 3rd.</caption>
</table>


## πŸ“œ Requirements

The following table shows the requirements for running Voyager (batch size = 1) to generate videos:

|      Model       | Resolution  | GPU Peak Memory  |
|:----------------:|:-----------:|:----------------:|
| HunyuanWorld-Voyager |    540p     |       60GB        |

* An NVIDIA GPU with CUDA support is required. 
  * The model is tested on a single 80G GPU.
  * **Minimum**: The minimum GPU memory required is 60GB for 540p.
  * **Recommended**: We recommend using a GPU with 80GB of memory for better generation quality.
* Tested operating system: Linux


## πŸ› οΈ Dependencies and Installation

Begin by cloning the repository:
```shell
git clone https://github.com/Tencent-Hunyuan/HunyuanWorld-Voyager
cd HunyuanWorld-Voyager
```

### Installation Guide for Linux

We recommend CUDA versions 12.4 or 11.8 for the manual installation.

```shell
# 1. Create conda environment
conda create -n voyager python==3.11.9

# 2. Activate the environment
conda activate voyager

# 3. Install PyTorch and other dependencies using conda
# For CUDA 12.4
conda install pytorch==2.4.0 torchvision==0.19.0 torchaudio==2.4.0 pytorch-cuda=12.4 -c pytorch -c nvidia

# 4. Install pip dependencies
python -m pip install -r requirements.txt
python -m pip install transformers==4.39.3

# 5. Install flash attention v2 for acceleration (requires CUDA 11.8 or above)
python -m pip install flash-attn

# 6. Install xDiT for parallel inference (It is recommended to use torch 2.4.0 and flash-attn 2.6.3)
python -m pip install xfuser==0.4.2
```

In case of running into float point exception(core dump) on the specific GPU type, you may try the following solutions:

```shell
# Making sure you have installed CUDA 12.4, CUBLAS>=12.4.5.8, and CUDNN>=9.00 (or simply using our CUDA 12 docker image).
pip install nvidia-cublas-cu12==12.4.5.8
export LD_LIBRARY_PATH=/opt/conda/lib/python3.8/site-packages/nvidia/cublas/lib/
```

To create your own input conditions, you also need to install the following dependencies:
```shell
pip install --no-deps git+https://github.com/microsoft/MoGe.git
pip install scipy==1.11.4
pip install git+https://github.com/EasternJournalist/utils3d.git@c5daf6f6c244d251f252102d09e9b7bcef791a38
```


## 🧱 Download Pretrained Models

A detailed guidance for downloading pretrained models is shown [here](ckpts/README.md). Briefly,
```
huggingface-cli download tencent/HunyuanWorld-Voyager --local-dir ./ckpts
```


## πŸ”‘ Inference
### Create Input Condition

We provide several input examples in the `examples` folder. You can find the corresponding input text in the `prompt.txt` file. If you'd like to use your own input image, you can run the following command:
```bash
cd data_engine

python3 create_input.py --image_path "your_input_image" --render_output_dir "examples/case/" --type "forward"
```
We provide the following types of camera path:
- forward
- backward
- left
- right
- turn_left
- turn_right
You can also modify the camera path in the `create_input.py` file.

### Single-GPU Inference

```bash
cd HunyuanWorld-Voyager

python3 sample_image2video.py \
    --model HYVideo-T/2 \
    --input-path "examples/case1" \
    --prompt "An old-fashioned European village with thatched roofs on the houses." \
    --i2v-stability \
    --infer-steps 50 \
    --flow-reverse \
    --flow-shift 7.0 \
    --seed 0 \
    --embedded-cfg-scale 6.0 \
    --use-cpu-offload \
    --save-path ./results
```
You can add "--use-context-block" to add the context block in the inference.

### Parallel Inference on Multiple GPUs by xDiT

[xDiT](https://github.com/xdit-project/xDiT) is a Scalable Inference Engine for Diffusion Transformers (DiTs) on multi-GPU Clusters.
It has successfully provided low-latency parallel inference solutions for a variety of DiTs models, including mochi-1, CogVideoX, Flux.1, SD3, etc. This repo adopted the [Unified Sequence Parallelism (USP)](https://arxiv.org/abs/2405.07719) APIs for parallel inference of the HunyuanVideo-I2V model.

For example, to generate a video with 8 GPUs, you can use the following command:

```bash
cd HunyuanWorld-Voyager

ALLOW_RESIZE_FOR_SP=1 torchrun --nproc_per_node=8 \
    sample_image2video.py \
    --model HYVideo-T/2 \
    --input-path "examples/case1" \
    --prompt "An old-fashioned European village with thatched roofs on the houses." \
    --i2v-stability \
    --infer-steps 50 \
    --flow-reverse \
    --flow-shift 7.0 \
    --seed 0 \
    --embedded-cfg-scale 6.0 \
    --save-path ./results \
    --ulysses-degree 8 \
    --ring-degree 1
```

The number of GPUs equals the product of `--ulysses-degree` and `--ring-degree.` Feel free to adjust these parallel configurations to optimize performance.

<p align="center">
<table align="center">
<thead>
<tr>
    <th colspan="4">Latency (Sec) for 512x768 (49 frames 50 steps) on 8 x H20 GPU</th>
</tr>
<tr>
    <th>1</th>
    <th>2</th>
    <th>4</th>
    <th>8</th>
</tr>
</thead>
<tbody>
<tr>
    <th>1925</th>
    <th>1018 (1.89x)</th>
    <th>534 (3.60x)</th>
    <th>288 (6.69x)</th>
</tr>

</tbody>
</table>
</p>

### Gradio Demo

We also provide a Gradio demo for the HunyuanWorld-Voyager model. 

<p align="center">
  <img src="assets/gradio.png"  height=500>
</p>

You can run the following command to start the demo:
```bash
cd HunyuanWorld-Voyager

python3 app.py
```
You need to first upload an image and choose a camera direction to create a condition video. Then, you can type your text prompt and generate the final RGB-D video.

### Export Point Cloud
After generating RGB-D video content, you can export `ply` file as follows:
```bash
cd data_engine

python3 convert_point.py --folder_path "your_input_condition_folder" --video_path "your_output_video_path"
```

## βš™οΈ Data Engine

We also release the data engine of HunyuanWorld-Voyager, which can be used to generate scalable data for RGB-D video training. Please refer to [data_engine](data_engine/README.md) for more details.

<p align="center">
  <img src="assets/data_engine.jpg"  height=500>
</p>


## πŸ”— BibTeX

If you find [Voyager](https://arxiv.org/abs/2506.04225) useful for your research and applications, please cite using this BibTeX:

```BibTeX
@article{huang2025voyager,
  title={Voyager: Long-Range and World-Consistent Video Diffusion for Explorable 3D Scene Generation},
  author={Huang, Tianyu and Zheng, Wangguandong and Wang, Tengfei and Liu, Yuhao and Wang, Zhenwei and Wu, Junta and Jiang, Jie and Li, Hui and Lau, Rynson WH and Zuo, Wangmeng and Guo, Chunchao},
  journal={arXiv preprint arXiv:2506.04225},
  year={2025}
}
```

## πŸ“§ Contact
Please send emails to [email protected] if there is any question

## Acknowledgements

We would like to thank [HunyuanWorld](https://github.com/Tencent-Hunyuan/HunyuanWorld-1.0), [Hunyuan3D](https://github.com/Tencent-Hunyuan/Hunyuan3D-2), and [HunyuanVideo](https://github.com/Tencent-Hunyuan/HunyuanVideo-I2V). We also thank [VGGT](https://github.com/facebookresearch/vggt), [MoGE](https://github.com/microsoft/MoGe), [Metric3D](https://github.com/YvanYin/Metric3D), for their open research and exploration.