# Random Seed seed: 0 # Maximum number of images per GPU (changes based on available GPU memory) max_num_of_imgs_per_gpu: 48 # Accumulate gradient iterations (for increasing the effective batch size under memory constraints) accum_iter: 1 # Maximum number of epochs for the scheduler epochs: 100 ## Default Optimizer parameters # Learning rate (absolute lr) lr: 0.0001 # Lower lr bound for cyclic schedulers that hit 0 min_lr: 1e-06 # Epochs to warmup LR warmup_epochs: 10 # Weight decay weight_decay: 0.05 # LR schedule type schedule_type: "linear_warmup_half_cycle_cosine_decay" # Warn if model params are not in the below submodule_configs warn_not_in_submodule: False # Optimizer parameters specific to submodules submodule_configs: {} # Use Automatic Mixed Precision for pretraining amp: 1 # Floating point type to use for mixed precision training amp_dtype: "bf16" # Disable CUDNN Benchmark (Disable for variable resolution & number of view training) disable_cudnn_benchmark: true # Freeze the validation samples across all epochs freeze_val_samples_across_all_epochs: true # Test loss evaluation frequency eval_freq: 1 # Frequency (number of epochs) to save checkpoint in checkpoint-last.pth save_freq: 1 # Frequency (number of epochs) to save checkpoint in checkpoint-%d.pth keep_freq: 10 # Frequence (number of iterations) to print infos while training (includes tensorboard logging) print_freq: 20 # Resume Training from last checkpoint resume: True