Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright (c) Meta Platforms, Inc. and affiliates. | |
| # All rights reserved. | |
| # This source code is licensed under the license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import os | |
| import torch | |
| import argparse | |
| import imageio.v3 as iio | |
| import numpy as np | |
| from cotracker.utils.visualizer import Visualizer | |
| from cotracker.predictor import CoTrackerOnlinePredictor | |
| # Unfortunately MPS acceleration does not support all the features we require, | |
| # but we may be able to enable it in the future | |
| DEFAULT_DEVICE = ( | |
| # "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" | |
| "cuda" | |
| if torch.cuda.is_available() | |
| else "cpu" | |
| ) | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument( | |
| "--video_path", | |
| default="./assets/apple.mp4", | |
| help="path to a video", | |
| ) | |
| parser.add_argument( | |
| "--checkpoint", | |
| default=None, | |
| help="CoTracker model parameters", | |
| ) | |
| parser.add_argument("--grid_size", type=int, default=10, help="Regular grid size") | |
| parser.add_argument( | |
| "--grid_query_frame", | |
| type=int, | |
| default=0, | |
| help="Compute dense and grid tracks starting from this frame", | |
| ) | |
| args = parser.parse_args() | |
| if not os.path.isfile(args.video_path): | |
| raise ValueError("Video file does not exist") | |
| if args.checkpoint is not None: | |
| model = CoTrackerOnlinePredictor(checkpoint=args.checkpoint) | |
| else: | |
| model = torch.hub.load("facebookresearch/co-tracker", "cotracker2_online") | |
| model = model.to(DEFAULT_DEVICE) | |
| window_frames = [] | |
| def _process_step(window_frames, is_first_step, grid_size, grid_query_frame): | |
| video_chunk = ( | |
| torch.tensor(np.stack(window_frames[-model.step * 2 :]), device=DEFAULT_DEVICE) | |
| .float() | |
| .permute(0, 3, 1, 2)[None] | |
| ) # (1, T, 3, H, W) | |
| return model( | |
| video_chunk, | |
| is_first_step=is_first_step, | |
| grid_size=grid_size, | |
| grid_query_frame=grid_query_frame, | |
| ) | |
| # Iterating over video frames, processing one window at a time: | |
| is_first_step = True | |
| for i, frame in enumerate( | |
| iio.imiter( | |
| args.video_path, | |
| plugin="FFMPEG", | |
| ) | |
| ): | |
| if i % model.step == 0 and i != 0: | |
| pred_tracks, pred_visibility = _process_step( | |
| window_frames, | |
| is_first_step, | |
| grid_size=args.grid_size, | |
| grid_query_frame=args.grid_query_frame, | |
| ) | |
| is_first_step = False | |
| window_frames.append(frame) | |
| # Processing the final video frames in case video length is not a multiple of model.step | |
| pred_tracks, pred_visibility = _process_step( | |
| window_frames[-(i % model.step) - model.step - 1 :], | |
| is_first_step, | |
| grid_size=args.grid_size, | |
| grid_query_frame=args.grid_query_frame, | |
| ) | |
| print("Tracks are computed") | |
| # save a video with predicted tracks | |
| seq_name = os.path.splitext(args.video_path.split("/")[-1])[0] | |
| video = torch.tensor(np.stack(window_frames), device=DEFAULT_DEVICE).permute(0, 3, 1, 2)[None] | |
| vis = Visualizer(save_dir="./saved_videos", pad_value=120, linewidth=3) | |
| vis.visualize(video, pred_tracks, pred_visibility, query_frame=args.grid_query_frame, filename=seq_name) | |