clipspace / app_fixed.py
borso271's picture
Add remove labels functionality with admin panel UI
2a97c1d
raw
history blame
10.4 kB
import gradio as gr
import base64
import json
import os
from PIL import Image
import io
from handler import EndpointHandler
# Initialize handler
print("Initializing MobileCLIP handler...")
try:
handler = EndpointHandler()
print(f"Handler initialized successfully! Device: {handler.device}")
except Exception as e:
print(f"Error initializing handler: {e}")
handler = None
def classify_image(image, top_k=10):
"""
Main classification function for public interface.
"""
if handler is None:
return "Error: Handler not initialized", None
if image is None:
return "Please upload an image", None
try:
# Convert PIL image to base64
buffered = io.BytesIO()
image.save(buffered, format="PNG")
img_b64 = base64.b64encode(buffered.getvalue()).decode()
# Call handler
result = handler({
"inputs": {
"image": img_b64,
"top_k": int(top_k)
}
})
# Format results for display
if isinstance(result, list):
# Create formatted output
output_text = "**Top {} Classifications:**\n\n".format(len(result))
# Create data for bar chart (list of tuples)
chart_data = []
for i, item in enumerate(result, 1):
score_pct = item['score'] * 100
output_text += f"{i}. **{item['label']}** (ID: {item['id']}): {score_pct:.2f}%\n"
chart_data.append((item['label'], item['score']))
return output_text, chart_data
else:
return f"Error: {result.get('error', 'Unknown error')}", None
except Exception as e:
return f"Error: {str(e)}", None
def upsert_labels_admin(admin_token, new_items_json):
"""
Admin function to add new labels.
"""
if handler is None:
return "Error: Handler not initialized"
if not admin_token:
return "Error: Admin token required"
try:
# Parse the JSON input
items = json.loads(new_items_json) if new_items_json else []
result = handler({
"inputs": {
"op": "upsert_labels",
"token": admin_token,
"items": items
}
})
if result.get("status") == "ok":
return f"βœ… Success! Added {result.get('added', 0)} new labels. Current version: {result.get('labels_version', 'unknown')}"
elif result.get("error") == "unauthorized":
return "❌ Error: Invalid admin token"
else:
return f"❌ Error: {result.get('detail', result.get('error', 'Unknown error'))}"
except json.JSONDecodeError:
return "❌ Error: Invalid JSON format"
except Exception as e:
return f"❌ Error: {str(e)}"
def reload_labels_admin(admin_token, version):
"""
Admin function to reload a specific label version.
"""
if handler is None:
return "Error: Handler not initialized"
if not admin_token:
return "Error: Admin token required"
try:
result = handler({
"inputs": {
"op": "reload_labels",
"token": admin_token,
"version": int(version) if version else 1
}
})
if result.get("status") == "ok":
return f"βœ… Labels reloaded successfully! Current version: {result.get('labels_version', 'unknown')}"
elif result.get("status") == "nochange":
return f"ℹ️ No change needed. Current version: {result.get('labels_version', 'unknown')}"
elif result.get("error") == "unauthorized":
return "❌ Error: Invalid admin token"
elif result.get("error") == "invalid_version":
return "❌ Error: Invalid version number"
else:
return f"❌ Error: {result.get('error', 'Unknown error')}"
except Exception as e:
return f"❌ Error: {str(e)}"
def get_current_stats():
"""
Get current label statistics.
"""
if handler is None:
return "Handler not initialized"
try:
num_labels = len(handler.class_ids) if hasattr(handler, 'class_ids') else 0
version = getattr(handler, 'labels_version', 1)
device = handler.device if hasattr(handler, 'device') else "unknown"
stats = f"""
**Current Statistics:**
- Number of labels: {num_labels}
- Labels version: {version}
- Device: {device}
- Model: MobileCLIP-B
"""
if hasattr(handler, 'class_names') and len(handler.class_names) > 0:
stats += f"\n- Sample labels: {', '.join(handler.class_names[:5])}"
if len(handler.class_names) > 5:
stats += "..."
return stats
except Exception as e:
return f"Error getting stats: {str(e)}"
# Create Gradio interface
print("Creating Gradio interface...")
with gr.Blocks(title="MobileCLIP Image Classifier") as demo:
gr.Markdown("""
# πŸ–ΌοΈ MobileCLIP-B Zero-Shot Image Classifier
Upload an image to classify it using MobileCLIP-B model with dynamic label management.
""")
with gr.Tab("πŸ” Image Classification"):
with gr.Row():
with gr.Column():
input_image = gr.Image(
type="pil",
label="Upload Image"
)
top_k_slider = gr.Slider(
minimum=1,
maximum=50,
value=10,
step=1,
label="Number of top results to show"
)
classify_btn = gr.Button("πŸš€ Classify Image", variant="primary")
with gr.Column():
output_text = gr.Markdown(label="Classification Results")
# Simplified bar chart using Dataframe
output_chart = gr.Dataframe(
headers=["Label", "Confidence"],
label="Classification Scores",
interactive=False
)
# Event handler for classification
classify_btn.click(
fn=classify_image,
inputs=[input_image, top_k_slider],
outputs=[output_text, output_chart]
)
# Also trigger on image upload
input_image.change(
fn=classify_image,
inputs=[input_image, top_k_slider],
outputs=[output_text, output_chart]
)
with gr.Tab("πŸ”§ Admin Panel"):
gr.Markdown("""
### Admin Functions
**Note:** Requires admin token (set via environment variable `ADMIN_TOKEN`)
""")
with gr.Row():
admin_token_input = gr.Textbox(
label="Admin Token",
type="password",
placeholder="Enter admin token"
)
with gr.Accordion("πŸ“Š Current Statistics", open=True):
stats_display = gr.Markdown(value=get_current_stats())
refresh_stats_btn = gr.Button("πŸ”„ Refresh Stats")
refresh_stats_btn.click(
fn=get_current_stats,
inputs=[],
outputs=stats_display
)
with gr.Accordion("βž• Add New Labels", open=False):
gr.Markdown("""
Add new labels by providing JSON array:
```json
[
{"id": 100, "name": "new_object", "prompt": "a photo of a new_object"},
{"id": 101, "name": "another_object", "prompt": "a photo of another_object"}
]
```
""")
new_items_input = gr.Code(
label="New Items JSON",
language="json",
lines=5,
value='[\n {"id": 100, "name": "example", "prompt": "a photo of example"}\n]'
)
upsert_btn = gr.Button("βž• Add Labels", variant="primary")
upsert_output = gr.Markdown()
upsert_btn.click(
fn=upsert_labels_admin,
inputs=[admin_token_input, new_items_input],
outputs=upsert_output
)
with gr.Accordion("πŸ”„ Reload Label Version", open=False):
gr.Markdown("Reload labels from a specific version stored in the Hub")
version_input = gr.Number(
label="Version Number",
value=1,
precision=0
)
reload_btn = gr.Button("πŸ”„ Reload Version", variant="primary")
reload_output = gr.Markdown()
reload_btn.click(
fn=reload_labels_admin,
inputs=[admin_token_input, version_input],
outputs=reload_output
)
with gr.Tab("ℹ️ About"):
gr.Markdown("""
## About MobileCLIP-B Classifier
This Space provides a web interface for Apple's MobileCLIP-B model, optimized for fast zero-shot image classification.
### Features:
- πŸš€ **Fast inference**: < 30ms on GPU
- 🏷️ **Dynamic labels**: Add/update labels without redeployment
- πŸ”„ **Version control**: Track and reload label versions
- πŸ“Š **Visual results**: Classification scores and confidence
### Environment Variables (set in Space Settings):
- `ADMIN_TOKEN`: Secret token for admin operations
- `HF_LABEL_REPO`: Hub repository for label storage
- `HF_WRITE_TOKEN`: Token with write permissions to label repo
- `HF_READ_TOKEN`: Token with read permissions (optional)
### Model Details:
- **Architecture**: MobileCLIP-B with MobileOne blocks
- **Text Encoder**: Transformer-based, 77 token context
- **Image Size**: 224x224
- **Embedding Dim**: 512
### License:
Model weights are licensed under Apple Sample Code License (ASCL).
""")
print("Gradio interface created successfully!")
if __name__ == "__main__":
print("Launching Gradio app...")
demo.launch()