Spaces:
Running
on
L40S
Running
on
L40S
| import os | |
| from typing import Union | |
| import cv2 | |
| import numpy as np | |
| import torch | |
| from diffusers.image_processor import VaeImageProcessor | |
| from PIL import Image | |
| from SCHP import SCHP # type: ignore | |
| from leffa_utils.densepose_for_mask import DensePose # type: ignore | |
| DENSE_INDEX_MAP = { | |
| "background": [0], | |
| "torso": [1, 2], | |
| "right hand": [3], | |
| "left hand": [4], | |
| "right foot": [5], | |
| "left foot": [6], | |
| "right thigh": [7, 9], | |
| "left thigh": [8, 10], | |
| "right leg": [11, 13], | |
| "left leg": [12, 14], | |
| "left big arm": [15, 17], | |
| "right big arm": [16, 18], | |
| "left forearm": [19, 21], | |
| "right forearm": [20, 22], | |
| "face": [23, 24], | |
| "thighs": [7, 8, 9, 10], | |
| "legs": [11, 12, 13, 14], | |
| "hands": [3, 4], | |
| "feet": [5, 6], | |
| "big arms": [15, 16, 17, 18], | |
| "forearms": [19, 20, 21, 22], | |
| } | |
| ATR_MAPPING = { | |
| "Background": 0, | |
| "Hat": 1, | |
| "Hair": 2, | |
| "Sunglasses": 3, | |
| "Upper-clothes": 4, | |
| "Skirt": 5, | |
| "Pants": 6, | |
| "Dress": 7, | |
| "Belt": 8, | |
| "Left-shoe": 9, | |
| "Right-shoe": 10, | |
| "Face": 11, | |
| "Left-leg": 12, | |
| "Right-leg": 13, | |
| "Left-arm": 14, | |
| "Right-arm": 15, | |
| "Bag": 16, | |
| "Scarf": 17, | |
| } | |
| LIP_MAPPING = { | |
| "Background": 0, | |
| "Hat": 1, | |
| "Hair": 2, | |
| "Glove": 3, | |
| "Sunglasses": 4, | |
| "Upper-clothes": 5, | |
| "Dress": 6, | |
| "Coat": 7, | |
| "Socks": 8, | |
| "Pants": 9, | |
| "Jumpsuits": 10, | |
| "Scarf": 11, | |
| "Skirt": 12, | |
| "Face": 13, | |
| "Left-arm": 14, | |
| "Right-arm": 15, | |
| "Left-leg": 16, | |
| "Right-leg": 17, | |
| "Left-shoe": 18, | |
| "Right-shoe": 19, | |
| } | |
| PROTECT_BODY_PARTS = { | |
| "upper": ["Left-leg", "Right-leg"], | |
| "lower": ["Right-arm", "Left-arm", "Face"], | |
| "overall": [], | |
| "inner": ["Left-leg", "Right-leg"], | |
| "outer": ["Left-leg", "Right-leg"], | |
| } | |
| PROTECT_CLOTH_PARTS = { | |
| "upper": {"ATR": ["Skirt", "Pants"], "LIP": ["Skirt", "Pants"]}, | |
| "lower": {"ATR": ["Upper-clothes"], "LIP": ["Upper-clothes", "Coat"]}, | |
| "overall": {"ATR": [], "LIP": []}, | |
| "inner": { | |
| "ATR": ["Dress", "Coat", "Skirt", "Pants"], | |
| "LIP": ["Dress", "Coat", "Skirt", "Pants", "Jumpsuits"], | |
| }, | |
| "outer": { | |
| "ATR": ["Dress", "Pants", "Skirt"], | |
| "LIP": ["Upper-clothes", "Dress", "Pants", "Skirt", "Jumpsuits"], | |
| }, | |
| } | |
| MASK_CLOTH_PARTS = { | |
| "upper": ["Upper-clothes", "Coat", "Dress", "Jumpsuits"], | |
| "lower": ["Pants", "Skirt", "Dress", "Jumpsuits"], | |
| "overall": ["Upper-clothes", "Dress", "Pants", "Skirt", "Coat", "Jumpsuits"], | |
| "inner": ["Upper-clothes"], | |
| "outer": [ | |
| "Coat", | |
| ], | |
| } | |
| MASK_DENSE_PARTS = { | |
| "upper": ["torso", "big arms", "forearms"], | |
| "lower": ["thighs", "legs"], | |
| "overall": ["torso", "thighs", "legs", "big arms", "forearms"], | |
| "inner": ["torso"], | |
| "outer": ["torso", "big arms", "forearms"], | |
| } | |
| schp_public_protect_parts = [ | |
| "Hat", | |
| "Hair", | |
| "Sunglasses", | |
| "Left-shoe", | |
| "Right-shoe", | |
| "Bag", | |
| "Glove", | |
| "Scarf", | |
| ] | |
| schp_protect_parts = { | |
| "upper": ["Left-leg", "Right-leg", "Skirt", "Pants", "Jumpsuits"], | |
| "lower": ["Left-arm", "Right-arm", "Upper-clothes", "Coat"], | |
| "overall": [], | |
| "inner": ["Left-leg", "Right-leg", "Skirt", "Pants", "Jumpsuits", "Coat"], | |
| "outer": ["Left-leg", "Right-leg", "Skirt", "Pants", "Jumpsuits", "Upper-clothes"], | |
| } | |
| schp_mask_parts = { | |
| "upper": ["Upper-clothes", "Dress", "Coat", "Jumpsuits"], | |
| "lower": ["Pants", "Skirt", "Dress", "Jumpsuits", "socks"], | |
| "overall": [ | |
| "Upper-clothes", | |
| "Dress", | |
| "Pants", | |
| "Skirt", | |
| "Coat", | |
| "Jumpsuits", | |
| "socks", | |
| ], | |
| "inner": ["Upper-clothes"], | |
| "outer": [ | |
| "Coat", | |
| ], | |
| } | |
| dense_mask_parts = { | |
| "upper": ["torso", "big arms", "forearms"], | |
| "lower": ["thighs", "legs"], | |
| "overall": ["torso", "thighs", "legs", "big arms", "forearms"], | |
| "inner": ["torso"], | |
| "outer": ["torso", "big arms", "forearms"], | |
| } | |
| def vis_mask(image, mask): | |
| image = np.array(image).astype(np.uint8) | |
| mask = np.array(mask).astype(np.uint8) | |
| mask[mask > 127] = 255 | |
| mask[mask <= 127] = 0 | |
| mask = np.expand_dims(mask, axis=-1) | |
| mask = np.repeat(mask, 3, axis=-1) | |
| mask = mask / 255 | |
| return Image.fromarray((image * (1 - mask)).astype(np.uint8)) | |
| def part_mask_of(part: Union[str, list], parse: np.ndarray, mapping: dict): | |
| if isinstance(part, str): | |
| part = [part] | |
| mask = np.zeros_like(parse) | |
| for _ in part: | |
| if _ not in mapping: | |
| continue | |
| if isinstance(mapping[_], list): | |
| for i in mapping[_]: | |
| mask += parse == i | |
| else: | |
| mask += parse == mapping[_] | |
| return mask | |
| def hull_mask(mask_area: np.ndarray): | |
| ret, binary = cv2.threshold(mask_area, 127, 255, cv2.THRESH_BINARY) | |
| contours, hierarchy = cv2.findContours( | |
| binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE | |
| ) | |
| hull_mask = np.zeros_like(mask_area) | |
| for c in contours: | |
| hull = cv2.convexHull(c) | |
| hull_mask = cv2.fillPoly(np.zeros_like(mask_area), [hull], 255) | hull_mask | |
| return hull_mask | |
| class AutoMasker: | |
| def __init__( | |
| self, | |
| densepose_path: str = "./ckpts/densepose", | |
| schp_path: str = "./ckpts/schp", | |
| device="cuda", | |
| ): | |
| np.random.seed(0) | |
| torch.manual_seed(0) | |
| torch.cuda.manual_seed(0) | |
| self.densepose_processor = DensePose(densepose_path, device) | |
| self.schp_processor_atr = SCHP( | |
| ckpt_path=os.path.join(schp_path, "exp-schp-201908301523-atr.pth"), | |
| device=device, | |
| ) | |
| self.schp_processor_lip = SCHP( | |
| ckpt_path=os.path.join(schp_path, "exp-schp-201908261155-lip.pth"), | |
| device=device, | |
| ) | |
| self.mask_processor = VaeImageProcessor( | |
| vae_scale_factor=8, | |
| do_normalize=False, | |
| do_binarize=True, | |
| do_convert_grayscale=True, | |
| ) | |
| def process_densepose(self, image_or_path): | |
| return self.densepose_processor(image_or_path, resize=1024) | |
| def process_schp_lip(self, image_or_path): | |
| return self.schp_processor_lip(image_or_path) | |
| def process_schp_atr(self, image_or_path): | |
| return self.schp_processor_atr(image_or_path) | |
| def preprocess_image(self, image_or_path): | |
| return { | |
| "densepose": self.densepose_processor(image_or_path, resize=1024), | |
| "schp_atr": self.schp_processor_atr(image_or_path), | |
| "schp_lip": self.schp_processor_lip(image_or_path), | |
| } | |
| def cloth_agnostic_mask( | |
| densepose_mask: Image.Image, | |
| schp_lip_mask: Image.Image, | |
| schp_atr_mask: Image.Image, | |
| part: str = "overall", | |
| **kwargs, | |
| ): | |
| assert part in [ | |
| "upper", | |
| "lower", | |
| "overall", | |
| "inner", | |
| "outer", | |
| ], f"part should be one of ['upper', 'lower', 'overall', 'inner', 'outer'], but got {part}" | |
| w, h = densepose_mask.size | |
| dilate_kernel = max(w, h) // 250 | |
| dilate_kernel = dilate_kernel if dilate_kernel % 2 == 1 else dilate_kernel + 1 | |
| dilate_kernel = np.ones((dilate_kernel, dilate_kernel), np.uint8) | |
| kernal_size = max(w, h) // 25 | |
| kernal_size = kernal_size if kernal_size % 2 == 1 else kernal_size + 1 | |
| densepose_mask = np.array(densepose_mask) | |
| schp_lip_mask = np.array(schp_lip_mask) | |
| schp_atr_mask = np.array(schp_atr_mask) | |
| # Strong Protect Area (Hands, Face, Accessory, Feet) | |
| hands_protect_area = part_mask_of( | |
| ["hands", "feet"], densepose_mask, DENSE_INDEX_MAP | |
| ) | |
| hands_protect_area = cv2.dilate(hands_protect_area, dilate_kernel, iterations=1) | |
| hands_protect_area = hands_protect_area & ( | |
| part_mask_of( | |
| ["Left-arm", "Right-arm", "Left-leg", "Right-leg"], | |
| schp_atr_mask, | |
| ATR_MAPPING, | |
| ) | |
| | part_mask_of( | |
| ["Left-arm", "Right-arm", "Left-leg", "Right-leg"], | |
| schp_lip_mask, | |
| LIP_MAPPING, | |
| ) | |
| ) | |
| face_protect_area = part_mask_of("Face", schp_lip_mask, LIP_MAPPING) | |
| strong_protect_area = hands_protect_area | face_protect_area | |
| # Weak Protect Area (Hair, Irrelevant Clothes, Body Parts) | |
| body_protect_area = part_mask_of( | |
| PROTECT_BODY_PARTS[part], schp_lip_mask, LIP_MAPPING | |
| ) | part_mask_of(PROTECT_BODY_PARTS[part], schp_atr_mask, ATR_MAPPING) | |
| hair_protect_area = part_mask_of( | |
| ["Hair"], schp_lip_mask, LIP_MAPPING | |
| ) | part_mask_of(["Hair"], schp_atr_mask, ATR_MAPPING) | |
| cloth_protect_area = part_mask_of( | |
| PROTECT_CLOTH_PARTS[part]["LIP"], schp_lip_mask, LIP_MAPPING | |
| ) | part_mask_of(PROTECT_CLOTH_PARTS[part]["ATR"], schp_atr_mask, ATR_MAPPING) | |
| accessory_protect_area = part_mask_of( | |
| ( | |
| accessory_parts := [ | |
| "Hat", | |
| "Glove", | |
| "Sunglasses", | |
| "Bag", | |
| "Left-shoe", | |
| "Right-shoe", | |
| "Scarf", | |
| "Socks", | |
| ] | |
| ), | |
| schp_lip_mask, | |
| LIP_MAPPING, | |
| ) | part_mask_of(accessory_parts, schp_atr_mask, ATR_MAPPING) | |
| weak_protect_area = ( | |
| body_protect_area | |
| | cloth_protect_area | |
| | hair_protect_area | |
| | strong_protect_area | |
| | accessory_protect_area | |
| ) | |
| # Mask Area | |
| strong_mask_area = part_mask_of( | |
| MASK_CLOTH_PARTS[part], schp_lip_mask, LIP_MAPPING | |
| ) | part_mask_of(MASK_CLOTH_PARTS[part], schp_atr_mask, ATR_MAPPING) | |
| background_area = part_mask_of( | |
| ["Background"], schp_lip_mask, LIP_MAPPING | |
| ) & part_mask_of(["Background"], schp_atr_mask, ATR_MAPPING) | |
| mask_dense_area = part_mask_of( | |
| MASK_DENSE_PARTS[part], densepose_mask, DENSE_INDEX_MAP | |
| ) | |
| mask_dense_area = cv2.resize( | |
| mask_dense_area.astype(np.uint8), | |
| None, | |
| fx=0.25, | |
| fy=0.25, | |
| interpolation=cv2.INTER_NEAREST, | |
| ) | |
| mask_dense_area = cv2.dilate(mask_dense_area, dilate_kernel, iterations=2) | |
| mask_dense_area = cv2.resize( | |
| mask_dense_area.astype(np.uint8), | |
| None, | |
| fx=4, | |
| fy=4, | |
| interpolation=cv2.INTER_NEAREST, | |
| ) | |
| mask_area = ( | |
| np.ones_like(densepose_mask) & (~weak_protect_area) & (~background_area) | |
| ) | mask_dense_area | |
| mask_area = ( | |
| hull_mask(mask_area * 255) // 255 | |
| ) # Convex Hull to expand the mask area | |
| mask_area = mask_area & (~weak_protect_area) | |
| mask_area = cv2.GaussianBlur(mask_area * 255, (kernal_size, kernal_size), 0) | |
| mask_area[mask_area < 25] = 0 | |
| mask_area[mask_area >= 25] = 1 | |
| mask_area = (mask_area | strong_mask_area) & (~strong_protect_area) | |
| mask_area = cv2.dilate(mask_area, dilate_kernel, iterations=1) | |
| return Image.fromarray(mask_area * 255) | |
| def __call__( | |
| self, | |
| image: Union[str, Image.Image], | |
| mask_type: str = "upper", | |
| ): | |
| assert mask_type in [ | |
| "upper", | |
| "lower", | |
| "overall", | |
| "inner", | |
| "outer", | |
| ], f"mask_type should be one of ['upper', 'lower', 'overall', 'inner', 'outer'], but got {mask_type}" | |
| preprocess_results = self.preprocess_image(image) | |
| mask = self.cloth_agnostic_mask( | |
| preprocess_results["densepose"], | |
| preprocess_results["schp_lip"], | |
| preprocess_results["schp_atr"], | |
| part=mask_type, | |
| ) | |
| return { | |
| "mask": mask, | |
| "densepose": preprocess_results["densepose"], | |
| "schp_lip": preprocess_results["schp_lip"], | |
| "schp_atr": preprocess_results["schp_atr"], | |
| } | |
| if __name__ == "__main__": | |
| import os | |
| import sys | |
| from PIL import Image | |
| automasker = AutoMasker() | |
| image_path = sys.argv[1] | |
| image = Image.open(image_path).convert("RGB") | |
| outputs = automasker( | |
| image, | |
| "upper", | |
| # "lower", | |
| ) | |
| mask = outputs["mask"] | |
| # densepose = outputs["densepose"] # densepose I map, range 0~24 | |
| # schp_lip = outputs["schp_lip"] | |
| # schp_atr = outputs["schp_atr"] | |
| mask.save(".".join(image_path.split(".")[:-1]) + "_mask.jpg") | |