Spaces:
Sleeping
Sleeping
| from transformers import AutoTokenizer, AutoModelForQuestionAnswering, pipeline | |
| import torch | |
| import gradio as grad | |
| import ast | |
| _pretrainedModelName = "savasy/bert-base-turkish-squad" | |
| _tokenizer = AutoTokenizer.from_pretrained(_pretrainedModelName) | |
| _model = AutoModelForQuestionAnswering.from_pretrained(_pretrainedModelName) | |
| _pipeline = pipeline("question-answering", model = _model, tokenizer = _tokenizer) | |
| def answer_question(question, context): | |
| text = "{" + "'question': '"+question+"', 'context':'"+context+"'}" | |
| di = ast.literal_eval(text) | |
| response = _pipeline(di) | |
| return response.get("answer") | |
| grad.Interface(answer_question, inputs=["text", "text"], outputs=["text"]).launch() | |
| ''' | |
| from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline | |
| import gradio as grad | |
| import ast | |
| #_model = "deepset/roberta-base-squad2" | |
| _model = "savasy/bert-base-turkish-squad" | |
| _pipeline = pipeline("question-answering", model = _model, tokenizer = _model) | |
| def answer_question(question, context): | |
| text = "{" + "'question': '"+question+"', 'context':'"+context+"'}" | |
| di = ast.literal_eval(text) | |
| response = _pipeline(di) | |
| return response | |
| grad.Interface(answer_question, inputs=["text", "text"], outputs="text").launch() | |
| ''' | |