Video-Fx / animator.py
garyuzair's picture
Upload 6 files
ad6d387 verified
import streamlit as st
import os
import numpy as np
from PIL import Image, ImageEnhance, ImageFilter, ImageDraw
import time
from concurrent.futures import ThreadPoolExecutor
from functools import partial
class Animator:
def __init__(self):
self.frame_cache = {}
self.aspect_ratio = "1:1" # Default aspect ratio
self.frames_per_animation = 15 # Default number of frames per animation for smoother transitions
def set_aspect_ratio(self, aspect_ratio):
"""Set the aspect ratio for animations"""
self.aspect_ratio = aspect_ratio
def set_frames_per_animation(self, frames):
"""Set the number of frames per animation"""
self.frames_per_animation = max(10, min(frames, 20)) # Keep between 10-20 frames for balance
def apply_cinematic_effects(self, image):
"""Apply cinematic effects to enhance the frame quality"""
try:
# Convert to PIL Image if it's a path
if isinstance(image, str):
img = Image.open(image)
else:
img = image
# Enhance contrast slightly
enhancer = ImageEnhance.Contrast(img)
img = enhancer.enhance(1.2)
# Enhance color saturation slightly
enhancer = ImageEnhance.Color(img)
img = enhancer.enhance(1.1)
# Add subtle vignette effect
# Create a radial gradient mask
mask = Image.new('L', img.size, 255)
draw = ImageDraw.Draw(mask)
width, height = img.size
center_x, center_y = width // 2, height // 2
max_radius = min(width, height) // 2
for y in range(height):
for x in range(width):
# Calculate distance from center
distance = np.sqrt((x - center_x)**2 + (y - center_y)**2)
# Create vignette effect (darker at edges)
intensity = int(255 * (1 - 0.3 * (distance / max_radius)**2))
mask.putpixel((x, y), intensity)
# Apply the mask
img = Image.composite(img, Image.new('RGB', img.size, (0, 0, 0)), mask)
# Add subtle film grain
grain = Image.effect_noise((img.width, img.height), 10)
grain = grain.convert('L')
grain = grain.filter(ImageFilter.GaussianBlur(radius=1))
img = Image.blend(img, Image.composite(img, Image.new('RGB', img.size, (128, 128, 128)), grain), 0.05)
return img
except Exception as e:
# If effects fail, return original image
if isinstance(image, str):
return Image.open(image)
return image
def add_zoom_animation(self, image_path, num_frames=None, zoom_factor=1.05, output_dir="temp"):
"""Add a simple zoom animation to an image with cinematic effects"""
if num_frames is None:
num_frames = self.frames_per_animation
# Check cache first
cache_key = f"zoom_{image_path}_{num_frames}_{zoom_factor}_{self.aspect_ratio}"
if cache_key in self.frame_cache:
return self.frame_cache[cache_key]
# Ensure output directory exists
os.makedirs(output_dir, exist_ok=True)
# Load the image
img = Image.open(image_path)
# Create a sequence of slightly modified images for animation
frames = []
for scale in np.linspace(1.0, zoom_factor, num_frames): # Subtle zoom
size = (int(img.width * scale), int(img.height * scale))
scaled_img = img.resize(size, Image.LANCZOS)
# Center the scaled image
new_img = Image.new("RGB", (img.width, img.height))
left = (img.width - scaled_img.width) // 2
top = (img.height - scaled_img.height) // 2
new_img.paste(scaled_img, (left, top))
# Apply cinematic effects
new_img = self.apply_cinematic_effects(new_img)
# Save the frame
frame_path = f"{output_dir}/frame_{os.path.basename(image_path)}_{len(frames)}.png"
new_img.save(frame_path)
frames.append(frame_path)
# Cache the result
self.frame_cache[cache_key] = frames
return frames
def add_pan_animation(self, image_path, num_frames=None, direction="right", output_dir="temp"):
"""Add a simple panning animation to an image with cinematic effects"""
if num_frames is None:
num_frames = self.frames_per_animation
# Check cache first
cache_key = f"pan_{image_path}_{num_frames}_{direction}_{self.aspect_ratio}"
if cache_key in self.frame_cache:
return self.frame_cache[cache_key]
# Ensure output directory exists
os.makedirs(output_dir, exist_ok=True)
# Load the image
img = Image.open(image_path)
# Create a sequence of panned images
frames = []
# Calculate pan parameters based on aspect ratio
# For portrait (9:16), horizontal panning should be more subtle
# For landscape (16:9), vertical panning should be more subtle
pan_factor = 0.1 # Default pan factor
if self.aspect_ratio == "9:16" and (direction == "left" or direction == "right"):
pan_factor = 0.05 # Reduce horizontal pan for portrait
elif self.aspect_ratio == "16:9" and (direction == "up" or direction == "down"):
pan_factor = 0.05 # Reduce vertical pan for landscape
# Calculate pan parameters
if direction == "right":
x_shifts = np.linspace(0, img.width * pan_factor, num_frames)
y_shifts = np.zeros(num_frames)
elif direction == "left":
x_shifts = np.linspace(0, -img.width * pan_factor, num_frames)
y_shifts = np.zeros(num_frames)
elif direction == "down":
x_shifts = np.zeros(num_frames)
y_shifts = np.linspace(0, img.height * pan_factor, num_frames)
elif direction == "up":
x_shifts = np.zeros(num_frames)
y_shifts = np.linspace(0, -img.height * pan_factor, num_frames)
else:
# Default to right
x_shifts = np.linspace(0, img.width * pan_factor, num_frames)
y_shifts = np.zeros(num_frames)
for i in range(num_frames):
# Create a new image with the same size
new_img = Image.new("RGB", (img.width, img.height))
# Paste the original image with shift
new_img.paste(img, (int(x_shifts[i]), int(y_shifts[i])))
# Apply cinematic effects
new_img = self.apply_cinematic_effects(new_img)
# Save the frame
frame_path = f"{output_dir}/frame_{os.path.basename(image_path)}_{i}.png"
new_img.save(frame_path)
frames.append(frame_path)
# Cache the result
self.frame_cache[cache_key] = frames
return frames
def add_fade_animation(self, image_path, num_frames=None, fade_type="in", output_dir="temp"):
"""Add a fade in/out animation to an image with cinematic effects"""
if num_frames is None:
num_frames = self.frames_per_animation
# Check cache first
cache_key = f"fade_{image_path}_{num_frames}_{fade_type}_{self.aspect_ratio}"
if cache_key in self.frame_cache:
return self.frame_cache[cache_key]
# Ensure output directory exists
os.makedirs(output_dir, exist_ok=True)
# Load the image
img = Image.open(image_path)
# Create a sequence of images with changing opacity
frames = []
if fade_type == "in":
alphas = np.linspace(0.3, 1.0, num_frames)
elif fade_type == "out":
alphas = np.linspace(1.0, 0.3, num_frames)
else:
# Default to fade in
alphas = np.linspace(0.3, 1.0, num_frames)
for i, alpha in enumerate(alphas):
# Create a new image with adjusted brightness
enhancer = Image.new("RGBA", img.size, (0, 0, 0, 0))
new_img = Image.blend(enhancer, img.convert("RGBA"), alpha)
new_img = new_img.convert("RGB")
# Apply cinematic effects
new_img = self.apply_cinematic_effects(new_img)
# Save the frame
frame_path = f"{output_dir}/frame_{os.path.basename(image_path)}_{i}.png"
new_img.save(frame_path)
frames.append(frame_path)
# Cache the result
self.frame_cache[cache_key] = frames
return frames
def add_ken_burns_effect(self, image_path, num_frames=None, output_dir="temp"):
"""Add a Ken Burns effect (combination of pan and zoom) with cinematic effects"""
if num_frames is None:
num_frames = self.frames_per_animation
# Check cache first
cache_key = f"kenburns_{image_path}_{num_frames}_{self.aspect_ratio}"
if cache_key in self.frame_cache:
return self.frame_cache[cache_key]
# Ensure output directory exists
os.makedirs(output_dir, exist_ok=True)
# Load the image
img = Image.open(image_path)
# Create a sequence of images with Ken Burns effect
frames = []
# Determine direction based on aspect ratio and image content
import random
if self.aspect_ratio == "16:9":
# For landscape, prefer horizontal movement
direction = random.choice(["right", "left"])
elif self.aspect_ratio == "9:16":
# For portrait, prefer vertical movement
direction = random.choice(["up", "down"])
else:
# For square, random direction
direction = random.choice(["right", "left", "up", "down"])
# Calculate pan parameters
if direction == "right":
x_shifts = np.linspace(0, img.width * 0.05, num_frames)
y_shifts = np.zeros(num_frames)
elif direction == "left":
x_shifts = np.linspace(0, -img.width * 0.05, num_frames)
y_shifts = np.zeros(num_frames)
elif direction == "down":
x_shifts = np.zeros(num_frames)
y_shifts = np.linspace(0, img.height * 0.05, num_frames)
elif direction == "up":
x_shifts = np.zeros(num_frames)
y_shifts = np.linspace(0, -img.height * 0.05, num_frames)
# Calculate zoom factors
zoom_factors = np.linspace(1.0, 1.05, num_frames)
for i in range(num_frames):
# Apply zoom
size = (int(img.width * zoom_factors[i]), int(img.height * zoom_factors[i]))
zoomed_img = img.resize(size, Image.LANCZOS)
# Create a new image with the same size as original
new_img = Image.new("RGB", (img.width, img.height))
# Calculate position with both zoom and pan
left = (img.width - zoomed_img.width) // 2 + int(x_shifts[i])
top = (img.height - zoomed_img.height) // 2 + int(y_shifts[i])
# Paste the zoomed image with shift
new_img.paste(zoomed_img, (left, top))
# Apply cinematic effects
new_img = self.apply_cinematic_effects(new_img)
# Save the frame
frame_path = f"{output_dir}/frame_{os.path.basename(image_path)}_{i}.png"
new_img.save(frame_path)
frames.append(frame_path)
# Cache the result
self.frame_cache[cache_key] = frames
return frames
def animate_single_image(self, img_path, animation_type="random", output_dir="temp", num_frames=None):
"""Animate a single image with cinematic effects"""
if num_frames is None:
num_frames = self.frames_per_animation
# Choose animation type
animation_types = ["zoom", "pan_right", "pan_left", "fade_in", "ken_burns"]
# For different aspect ratios, prioritize certain animations
if self.aspect_ratio == "16:9":
# For landscape, prioritize horizontal panning
animation_types = ["zoom", "pan_left", "pan_right", "ken_burns", "fade_in"]
elif self.aspect_ratio == "9:16":
# For portrait, prioritize vertical panning
animation_types = ["zoom", "ken_burns", "fade_in", "pan_up", "pan_down"]
if animation_type == "random":
# Use hash of image path to deterministically select animation type
import random
random.seed(hash(img_path))
chosen_type = random.choice(animation_types)
else:
chosen_type = animation_type
# Apply the chosen animation
if chosen_type == "ken_burns":
frames = self.add_ken_burns_effect(img_path, num_frames=num_frames, output_dir=output_dir)
elif chosen_type.startswith("pan"):
direction = chosen_type.split("_")[1] if "_" in chosen_type else "right"
frames = self.add_pan_animation(img_path, num_frames=num_frames, direction=direction, output_dir=output_dir)
elif chosen_type.startswith("fade"):
fade_type = chosen_type.split("_")[1] if "_" in chosen_type else "in"
frames = self.add_fade_animation(img_path, num_frames=num_frames, fade_type=fade_type, output_dir=output_dir)
else: # Default to zoom
frames = self.add_zoom_animation(img_path, num_frames=num_frames, output_dir=output_dir)
return frames
def animate_images(self, image_paths, animation_type="random", output_dir="temp",
progress_callback=None, parallel=False, max_workers=4, batch_size=2, num_frames=None):
"""Add animations to a list of images with parallel processing and batching"""
if num_frames is None:
num_frames = self.frames_per_animation
all_animated_frames = []
if parallel and len(image_paths) > 1:
# Process in parallel using ThreadPoolExecutor
with ThreadPoolExecutor(max_workers=max_workers) as executor:
# Create a partial function with fixed parameters
animate_func = partial(self.animate_single_image,
animation_type=animation_type,
output_dir=output_dir,
num_frames=num_frames)
# Process images in parallel
if progress_callback:
progress_callback("Animating images in parallel...")
# Map and collect results
all_animated_frames = list(executor.map(animate_func, image_paths))
else:
# Process in batches
for i in range(0, len(image_paths), batch_size):
batch = image_paths[i:i+batch_size]
if progress_callback:
progress_callback(f"Animating batch {i//batch_size + 1}/{(len(image_paths) + batch_size - 1)//batch_size}...")
batch_frames = []
for img_path in batch:
frames = self.animate_single_image(img_path, animation_type, output_dir, num_frames)
batch_frames.append(frames)
all_animated_frames.extend(batch_frames)
return all_animated_frames
def clear_cache(self):
"""Clear the animation frame cache"""
self.frame_cache = {}
return True