Upload 7 files
Browse files- animator.py +176 -17
- app.py +200 -4
- image_generator.py +50 -2
- prompt_generator.py +110 -19
- requirements.txt +15 -12
- transcriber.py +125 -89
- video_creator.py +239 -83
animator.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
import os
|
| 3 |
import numpy as np
|
| 4 |
-
from PIL import Image
|
| 5 |
import time
|
| 6 |
from concurrent.futures import ThreadPoolExecutor
|
| 7 |
from functools import partial
|
|
@@ -9,11 +9,66 @@ from functools import partial
|
|
| 9 |
class Animator:
|
| 10 |
def __init__(self):
|
| 11 |
self.frame_cache = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
def add_zoom_animation(self, image_path, num_frames=10, zoom_factor=1.05, output_dir="temp"):
|
| 14 |
-
"""Add a simple zoom animation to an image"""
|
| 15 |
# Check cache first
|
| 16 |
-
cache_key = f"zoom_{image_path}_{num_frames}_{zoom_factor}"
|
| 17 |
if cache_key in self.frame_cache:
|
| 18 |
return self.frame_cache[cache_key]
|
| 19 |
|
|
@@ -35,6 +90,9 @@ class Animator:
|
|
| 35 |
top = (img.height - scaled_img.height) // 2
|
| 36 |
new_img.paste(scaled_img, (left, top))
|
| 37 |
|
|
|
|
|
|
|
|
|
|
| 38 |
# Save the frame
|
| 39 |
frame_path = f"{output_dir}/frame_{os.path.basename(image_path)}_{len(frames)}.png"
|
| 40 |
new_img.save(frame_path)
|
|
@@ -45,9 +103,9 @@ class Animator:
|
|
| 45 |
return frames
|
| 46 |
|
| 47 |
def add_pan_animation(self, image_path, num_frames=10, direction="right", output_dir="temp"):
|
| 48 |
-
"""Add a simple panning animation to an image"""
|
| 49 |
# Check cache first
|
| 50 |
-
cache_key = f"pan_{image_path}_{num_frames}_{direction}"
|
| 51 |
if cache_key in self.frame_cache:
|
| 52 |
return self.frame_cache[cache_key]
|
| 53 |
|
|
@@ -60,22 +118,32 @@ class Animator:
|
|
| 60 |
# Create a sequence of panned images
|
| 61 |
frames = []
|
| 62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
# Calculate pan parameters
|
| 64 |
if direction == "right":
|
| 65 |
-
x_shifts = np.linspace(0, img.width *
|
| 66 |
y_shifts = np.zeros(num_frames)
|
| 67 |
elif direction == "left":
|
| 68 |
-
x_shifts = np.linspace(0, -img.width *
|
| 69 |
y_shifts = np.zeros(num_frames)
|
| 70 |
elif direction == "down":
|
| 71 |
x_shifts = np.zeros(num_frames)
|
| 72 |
-
y_shifts = np.linspace(0, img.height *
|
| 73 |
elif direction == "up":
|
| 74 |
x_shifts = np.zeros(num_frames)
|
| 75 |
-
y_shifts = np.linspace(0, -img.height *
|
| 76 |
else:
|
| 77 |
# Default to right
|
| 78 |
-
x_shifts = np.linspace(0, img.width *
|
| 79 |
y_shifts = np.zeros(num_frames)
|
| 80 |
|
| 81 |
for i in range(num_frames):
|
|
@@ -85,6 +153,9 @@ class Animator:
|
|
| 85 |
# Paste the original image with shift
|
| 86 |
new_img.paste(img, (int(x_shifts[i]), int(y_shifts[i])))
|
| 87 |
|
|
|
|
|
|
|
|
|
|
| 88 |
# Save the frame
|
| 89 |
frame_path = f"{output_dir}/frame_{os.path.basename(image_path)}_{i}.png"
|
| 90 |
new_img.save(frame_path)
|
|
@@ -95,9 +166,9 @@ class Animator:
|
|
| 95 |
return frames
|
| 96 |
|
| 97 |
def add_fade_animation(self, image_path, num_frames=10, fade_type="in", output_dir="temp"):
|
| 98 |
-
"""Add a fade in/out animation to an image"""
|
| 99 |
# Check cache first
|
| 100 |
-
cache_key = f"fade_{image_path}_{num_frames}_{fade_type}"
|
| 101 |
if cache_key in self.frame_cache:
|
| 102 |
return self.frame_cache[cache_key]
|
| 103 |
|
|
@@ -122,10 +193,86 @@ class Animator:
|
|
| 122 |
# Create a new image with adjusted brightness
|
| 123 |
enhancer = Image.new("RGBA", img.size, (0, 0, 0, 0))
|
| 124 |
new_img = Image.blend(enhancer, img.convert("RGBA"), alpha)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
|
| 126 |
# Save the frame
|
| 127 |
frame_path = f"{output_dir}/frame_{os.path.basename(image_path)}_{i}.png"
|
| 128 |
-
new_img.
|
| 129 |
frames.append(frame_path)
|
| 130 |
|
| 131 |
# Cache the result
|
|
@@ -133,18 +280,30 @@ class Animator:
|
|
| 133 |
return frames
|
| 134 |
|
| 135 |
def animate_single_image(self, img_path, animation_type="random", output_dir="temp"):
|
| 136 |
-
"""Animate a single image"""
|
| 137 |
# Choose animation type
|
| 138 |
-
animation_types = ["zoom", "pan_right", "pan_left", "fade_in"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
|
| 140 |
if animation_type == "random":
|
| 141 |
# Use hash of image path to deterministically select animation type
|
| 142 |
-
|
|
|
|
|
|
|
| 143 |
else:
|
| 144 |
chosen_type = animation_type
|
| 145 |
|
| 146 |
# Apply the chosen animation
|
| 147 |
-
if chosen_type
|
|
|
|
|
|
|
| 148 |
direction = chosen_type.split("_")[1] if "_" in chosen_type else "right"
|
| 149 |
frames = self.add_pan_animation(img_path, direction=direction, output_dir=output_dir)
|
| 150 |
elif chosen_type.startswith("fade"):
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import os
|
| 3 |
import numpy as np
|
| 4 |
+
from PIL import Image, ImageEnhance, ImageFilter, ImageDraw
|
| 5 |
import time
|
| 6 |
from concurrent.futures import ThreadPoolExecutor
|
| 7 |
from functools import partial
|
|
|
|
| 9 |
class Animator:
|
| 10 |
def __init__(self):
|
| 11 |
self.frame_cache = {}
|
| 12 |
+
self.aspect_ratio = "1:1" # Default aspect ratio
|
| 13 |
+
|
| 14 |
+
def set_aspect_ratio(self, aspect_ratio):
|
| 15 |
+
"""Set the aspect ratio for animations"""
|
| 16 |
+
self.aspect_ratio = aspect_ratio
|
| 17 |
+
|
| 18 |
+
def apply_cinematic_effects(self, image):
|
| 19 |
+
"""Apply cinematic effects to enhance the frame quality"""
|
| 20 |
+
try:
|
| 21 |
+
# Convert to PIL Image if it's a path
|
| 22 |
+
if isinstance(image, str):
|
| 23 |
+
img = Image.open(image)
|
| 24 |
+
else:
|
| 25 |
+
img = image
|
| 26 |
+
|
| 27 |
+
# Enhance contrast slightly
|
| 28 |
+
enhancer = ImageEnhance.Contrast(img)
|
| 29 |
+
img = enhancer.enhance(1.2)
|
| 30 |
+
|
| 31 |
+
# Enhance color saturation slightly
|
| 32 |
+
enhancer = ImageEnhance.Color(img)
|
| 33 |
+
img = enhancer.enhance(1.1)
|
| 34 |
+
|
| 35 |
+
# Add subtle vignette effect
|
| 36 |
+
# Create a radial gradient mask
|
| 37 |
+
mask = Image.new('L', img.size, 255)
|
| 38 |
+
draw = ImageDraw.Draw(mask)
|
| 39 |
+
|
| 40 |
+
width, height = img.size
|
| 41 |
+
center_x, center_y = width // 2, height // 2
|
| 42 |
+
max_radius = min(width, height) // 2
|
| 43 |
+
|
| 44 |
+
for y in range(height):
|
| 45 |
+
for x in range(width):
|
| 46 |
+
# Calculate distance from center
|
| 47 |
+
distance = np.sqrt((x - center_x)**2 + (y - center_y)**2)
|
| 48 |
+
# Create vignette effect (darker at edges)
|
| 49 |
+
intensity = int(255 * (1 - 0.3 * (distance / max_radius)**2))
|
| 50 |
+
mask.putpixel((x, y), intensity)
|
| 51 |
+
|
| 52 |
+
# Apply the mask
|
| 53 |
+
img = Image.composite(img, Image.new('RGB', img.size, (0, 0, 0)), mask)
|
| 54 |
+
|
| 55 |
+
# Add subtle film grain
|
| 56 |
+
grain = Image.effect_noise((img.width, img.height), 10)
|
| 57 |
+
grain = grain.convert('L')
|
| 58 |
+
grain = grain.filter(ImageFilter.GaussianBlur(radius=1))
|
| 59 |
+
img = Image.blend(img, Image.composite(img, Image.new('RGB', img.size, (128, 128, 128)), grain), 0.05)
|
| 60 |
+
|
| 61 |
+
return img
|
| 62 |
+
except Exception as e:
|
| 63 |
+
# If effects fail, return original image
|
| 64 |
+
if isinstance(image, str):
|
| 65 |
+
return Image.open(image)
|
| 66 |
+
return image
|
| 67 |
|
| 68 |
def add_zoom_animation(self, image_path, num_frames=10, zoom_factor=1.05, output_dir="temp"):
|
| 69 |
+
"""Add a simple zoom animation to an image with cinematic effects"""
|
| 70 |
# Check cache first
|
| 71 |
+
cache_key = f"zoom_{image_path}_{num_frames}_{zoom_factor}_{self.aspect_ratio}"
|
| 72 |
if cache_key in self.frame_cache:
|
| 73 |
return self.frame_cache[cache_key]
|
| 74 |
|
|
|
|
| 90 |
top = (img.height - scaled_img.height) // 2
|
| 91 |
new_img.paste(scaled_img, (left, top))
|
| 92 |
|
| 93 |
+
# Apply cinematic effects
|
| 94 |
+
new_img = self.apply_cinematic_effects(new_img)
|
| 95 |
+
|
| 96 |
# Save the frame
|
| 97 |
frame_path = f"{output_dir}/frame_{os.path.basename(image_path)}_{len(frames)}.png"
|
| 98 |
new_img.save(frame_path)
|
|
|
|
| 103 |
return frames
|
| 104 |
|
| 105 |
def add_pan_animation(self, image_path, num_frames=10, direction="right", output_dir="temp"):
|
| 106 |
+
"""Add a simple panning animation to an image with cinematic effects"""
|
| 107 |
# Check cache first
|
| 108 |
+
cache_key = f"pan_{image_path}_{num_frames}_{direction}_{self.aspect_ratio}"
|
| 109 |
if cache_key in self.frame_cache:
|
| 110 |
return self.frame_cache[cache_key]
|
| 111 |
|
|
|
|
| 118 |
# Create a sequence of panned images
|
| 119 |
frames = []
|
| 120 |
|
| 121 |
+
# Calculate pan parameters based on aspect ratio
|
| 122 |
+
# For portrait (9:16), horizontal panning should be more subtle
|
| 123 |
+
# For landscape (16:9), vertical panning should be more subtle
|
| 124 |
+
pan_factor = 0.1 # Default pan factor
|
| 125 |
+
|
| 126 |
+
if self.aspect_ratio == "9:16" and (direction == "left" or direction == "right"):
|
| 127 |
+
pan_factor = 0.05 # Reduce horizontal pan for portrait
|
| 128 |
+
elif self.aspect_ratio == "16:9" and (direction == "up" or direction == "down"):
|
| 129 |
+
pan_factor = 0.05 # Reduce vertical pan for landscape
|
| 130 |
+
|
| 131 |
# Calculate pan parameters
|
| 132 |
if direction == "right":
|
| 133 |
+
x_shifts = np.linspace(0, img.width * pan_factor, num_frames)
|
| 134 |
y_shifts = np.zeros(num_frames)
|
| 135 |
elif direction == "left":
|
| 136 |
+
x_shifts = np.linspace(0, -img.width * pan_factor, num_frames)
|
| 137 |
y_shifts = np.zeros(num_frames)
|
| 138 |
elif direction == "down":
|
| 139 |
x_shifts = np.zeros(num_frames)
|
| 140 |
+
y_shifts = np.linspace(0, img.height * pan_factor, num_frames)
|
| 141 |
elif direction == "up":
|
| 142 |
x_shifts = np.zeros(num_frames)
|
| 143 |
+
y_shifts = np.linspace(0, -img.height * pan_factor, num_frames)
|
| 144 |
else:
|
| 145 |
# Default to right
|
| 146 |
+
x_shifts = np.linspace(0, img.width * pan_factor, num_frames)
|
| 147 |
y_shifts = np.zeros(num_frames)
|
| 148 |
|
| 149 |
for i in range(num_frames):
|
|
|
|
| 153 |
# Paste the original image with shift
|
| 154 |
new_img.paste(img, (int(x_shifts[i]), int(y_shifts[i])))
|
| 155 |
|
| 156 |
+
# Apply cinematic effects
|
| 157 |
+
new_img = self.apply_cinematic_effects(new_img)
|
| 158 |
+
|
| 159 |
# Save the frame
|
| 160 |
frame_path = f"{output_dir}/frame_{os.path.basename(image_path)}_{i}.png"
|
| 161 |
new_img.save(frame_path)
|
|
|
|
| 166 |
return frames
|
| 167 |
|
| 168 |
def add_fade_animation(self, image_path, num_frames=10, fade_type="in", output_dir="temp"):
|
| 169 |
+
"""Add a fade in/out animation to an image with cinematic effects"""
|
| 170 |
# Check cache first
|
| 171 |
+
cache_key = f"fade_{image_path}_{num_frames}_{fade_type}_{self.aspect_ratio}"
|
| 172 |
if cache_key in self.frame_cache:
|
| 173 |
return self.frame_cache[cache_key]
|
| 174 |
|
|
|
|
| 193 |
# Create a new image with adjusted brightness
|
| 194 |
enhancer = Image.new("RGBA", img.size, (0, 0, 0, 0))
|
| 195 |
new_img = Image.blend(enhancer, img.convert("RGBA"), alpha)
|
| 196 |
+
new_img = new_img.convert("RGB")
|
| 197 |
+
|
| 198 |
+
# Apply cinematic effects
|
| 199 |
+
new_img = self.apply_cinematic_effects(new_img)
|
| 200 |
+
|
| 201 |
+
# Save the frame
|
| 202 |
+
frame_path = f"{output_dir}/frame_{os.path.basename(image_path)}_{i}.png"
|
| 203 |
+
new_img.save(frame_path)
|
| 204 |
+
frames.append(frame_path)
|
| 205 |
+
|
| 206 |
+
# Cache the result
|
| 207 |
+
self.frame_cache[cache_key] = frames
|
| 208 |
+
return frames
|
| 209 |
+
|
| 210 |
+
def add_ken_burns_effect(self, image_path, num_frames=10, output_dir="temp"):
|
| 211 |
+
"""Add a Ken Burns effect (combination of pan and zoom) with cinematic effects"""
|
| 212 |
+
# Check cache first
|
| 213 |
+
cache_key = f"kenburns_{image_path}_{num_frames}_{self.aspect_ratio}"
|
| 214 |
+
if cache_key in self.frame_cache:
|
| 215 |
+
return self.frame_cache[cache_key]
|
| 216 |
+
|
| 217 |
+
# Ensure output directory exists
|
| 218 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 219 |
+
|
| 220 |
+
# Load the image
|
| 221 |
+
img = Image.open(image_path)
|
| 222 |
+
|
| 223 |
+
# Create a sequence of images with Ken Burns effect
|
| 224 |
+
frames = []
|
| 225 |
+
|
| 226 |
+
# Determine direction based on aspect ratio and image content
|
| 227 |
+
import random
|
| 228 |
+
if self.aspect_ratio == "16:9":
|
| 229 |
+
# For landscape, prefer horizontal movement
|
| 230 |
+
direction = random.choice(["right", "left"])
|
| 231 |
+
elif self.aspect_ratio == "9:16":
|
| 232 |
+
# For portrait, prefer vertical movement
|
| 233 |
+
direction = random.choice(["up", "down"])
|
| 234 |
+
else:
|
| 235 |
+
# For square, random direction
|
| 236 |
+
direction = random.choice(["right", "left", "up", "down"])
|
| 237 |
+
|
| 238 |
+
# Calculate pan parameters
|
| 239 |
+
if direction == "right":
|
| 240 |
+
x_shifts = np.linspace(0, img.width * 0.05, num_frames)
|
| 241 |
+
y_shifts = np.zeros(num_frames)
|
| 242 |
+
elif direction == "left":
|
| 243 |
+
x_shifts = np.linspace(0, -img.width * 0.05, num_frames)
|
| 244 |
+
y_shifts = np.zeros(num_frames)
|
| 245 |
+
elif direction == "down":
|
| 246 |
+
x_shifts = np.zeros(num_frames)
|
| 247 |
+
y_shifts = np.linspace(0, img.height * 0.05, num_frames)
|
| 248 |
+
elif direction == "up":
|
| 249 |
+
x_shifts = np.zeros(num_frames)
|
| 250 |
+
y_shifts = np.linspace(0, -img.height * 0.05, num_frames)
|
| 251 |
+
|
| 252 |
+
# Calculate zoom factors
|
| 253 |
+
zoom_factors = np.linspace(1.0, 1.05, num_frames)
|
| 254 |
+
|
| 255 |
+
for i in range(num_frames):
|
| 256 |
+
# Apply zoom
|
| 257 |
+
size = (int(img.width * zoom_factors[i]), int(img.height * zoom_factors[i]))
|
| 258 |
+
zoomed_img = img.resize(size, Image.LANCZOS)
|
| 259 |
+
|
| 260 |
+
# Create a new image with the same size as original
|
| 261 |
+
new_img = Image.new("RGB", (img.width, img.height))
|
| 262 |
+
|
| 263 |
+
# Calculate position with both zoom and pan
|
| 264 |
+
left = (img.width - zoomed_img.width) // 2 + int(x_shifts[i])
|
| 265 |
+
top = (img.height - zoomed_img.height) // 2 + int(y_shifts[i])
|
| 266 |
+
|
| 267 |
+
# Paste the zoomed image with shift
|
| 268 |
+
new_img.paste(zoomed_img, (left, top))
|
| 269 |
+
|
| 270 |
+
# Apply cinematic effects
|
| 271 |
+
new_img = self.apply_cinematic_effects(new_img)
|
| 272 |
|
| 273 |
# Save the frame
|
| 274 |
frame_path = f"{output_dir}/frame_{os.path.basename(image_path)}_{i}.png"
|
| 275 |
+
new_img.save(frame_path)
|
| 276 |
frames.append(frame_path)
|
| 277 |
|
| 278 |
# Cache the result
|
|
|
|
| 280 |
return frames
|
| 281 |
|
| 282 |
def animate_single_image(self, img_path, animation_type="random", output_dir="temp"):
|
| 283 |
+
"""Animate a single image with cinematic effects"""
|
| 284 |
# Choose animation type
|
| 285 |
+
animation_types = ["zoom", "pan_right", "pan_left", "fade_in", "ken_burns"]
|
| 286 |
+
|
| 287 |
+
# For different aspect ratios, prioritize certain animations
|
| 288 |
+
if self.aspect_ratio == "16:9":
|
| 289 |
+
# For landscape, prioritize horizontal panning
|
| 290 |
+
animation_types = ["zoom", "pan_left", "pan_right", "ken_burns", "fade_in"]
|
| 291 |
+
elif self.aspect_ratio == "9:16":
|
| 292 |
+
# For portrait, prioritize vertical panning
|
| 293 |
+
animation_types = ["zoom", "ken_burns", "fade_in", "pan_up", "pan_down"]
|
| 294 |
|
| 295 |
if animation_type == "random":
|
| 296 |
# Use hash of image path to deterministically select animation type
|
| 297 |
+
import random
|
| 298 |
+
random.seed(hash(img_path))
|
| 299 |
+
chosen_type = random.choice(animation_types)
|
| 300 |
else:
|
| 301 |
chosen_type = animation_type
|
| 302 |
|
| 303 |
# Apply the chosen animation
|
| 304 |
+
if chosen_type == "ken_burns":
|
| 305 |
+
frames = self.add_ken_burns_effect(img_path, output_dir=output_dir)
|
| 306 |
+
elif chosen_type.startswith("pan"):
|
| 307 |
direction = chosen_type.split("_")[1] if "_" in chosen_type else "right"
|
| 308 |
frames = self.add_pan_animation(img_path, direction=direction, output_dir=output_dir)
|
| 309 |
elif chosen_type.startswith("fade"):
|
app.py
CHANGED
|
@@ -6,6 +6,7 @@ import concurrent.futures
|
|
| 6 |
from functools import partial
|
| 7 |
import torch
|
| 8 |
import hashlib
|
|
|
|
| 9 |
|
| 10 |
from transcriber import AudioTranscriber
|
| 11 |
from prompt_generator import PromptGenerator
|
|
@@ -116,10 +117,10 @@ def process_audio_segment(segment, transcriber):
|
|
| 116 |
st.warning(f"Error transcribing segment: {str(e)}. Using empty transcription.")
|
| 117 |
return ""
|
| 118 |
|
| 119 |
-
def generate_prompt_for_segment(transcription, prompt_generator):
|
| 120 |
"""Generate a prompt for a single transcription in parallel"""
|
| 121 |
try:
|
| 122 |
-
return prompt_generator.generate_optimized_prompt(transcription)
|
| 123 |
except Exception as e:
|
| 124 |
st.warning(f"Error generating prompt: {str(e)}. Using fallback prompt.")
|
| 125 |
return f"{transcription}, visual scene, detailed, vibrant, cinematic"
|
|
@@ -204,7 +205,7 @@ def main():
|
|
| 204 |
help="How many scenes to create in your video")
|
| 205 |
animation_type = st.selectbox(
|
| 206 |
"Animation style",
|
| 207 |
-
["random", "zoom", "pan_right", "pan_left", "fade_in"],
|
| 208 |
help="Choose how images will animate in your video"
|
| 209 |
)
|
| 210 |
|
|
@@ -378,4 +379,199 @@ def main():
|
|
| 378 |
trans = transcriber.transcribe_segment(segment)
|
| 379 |
transcriptions.append(trans)
|
| 380 |
except Exception as e:
|
| 381 |
-
st.warning("Error transcribing
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
from functools import partial
|
| 7 |
import torch
|
| 8 |
import hashlib
|
| 9 |
+
from PIL import Image, ImageDraw
|
| 10 |
|
| 11 |
from transcriber import AudioTranscriber
|
| 12 |
from prompt_generator import PromptGenerator
|
|
|
|
| 117 |
st.warning(f"Error transcribing segment: {str(e)}. Using empty transcription.")
|
| 118 |
return ""
|
| 119 |
|
| 120 |
+
def generate_prompt_for_segment(transcription, prompt_generator, aspect_ratio="16:9"):
|
| 121 |
"""Generate a prompt for a single transcription in parallel"""
|
| 122 |
try:
|
| 123 |
+
return prompt_generator.generate_optimized_prompt(transcription, aspect_ratio)
|
| 124 |
except Exception as e:
|
| 125 |
st.warning(f"Error generating prompt: {str(e)}. Using fallback prompt.")
|
| 126 |
return f"{transcription}, visual scene, detailed, vibrant, cinematic"
|
|
|
|
| 205 |
help="How many scenes to create in your video")
|
| 206 |
animation_type = st.selectbox(
|
| 207 |
"Animation style",
|
| 208 |
+
["random", "zoom", "pan_right", "pan_left", "fade_in", "ken_burns"],
|
| 209 |
help="Choose how images will animate in your video"
|
| 210 |
)
|
| 211 |
|
|
|
|
| 379 |
trans = transcriber.transcribe_segment(segment)
|
| 380 |
transcriptions.append(trans)
|
| 381 |
except Exception as e:
|
| 382 |
+
st.warning(f"Error transcribing segment: {str(e)}. Using empty transcription.")
|
| 383 |
+
transcriptions.append("")
|
| 384 |
+
|
| 385 |
+
# Display transcriptions with better styling
|
| 386 |
+
progress_bar.progress(30)
|
| 387 |
+
st.markdown("### 📝 Transcriptions")
|
| 388 |
+
for i, (trans, (start, end)) in enumerate(zip(transcriptions, timestamps)):
|
| 389 |
+
st.markdown(f"""
|
| 390 |
+
<div style="background-color: #f0f2f6; padding: 10px; border-radius: 5px; margin-bottom: 10px;">
|
| 391 |
+
<strong>Segment {i+1} ({start:.1f}s - {end:.1f}s):</strong> {trans}
|
| 392 |
+
</div>
|
| 393 |
+
""", unsafe_allow_html=True)
|
| 394 |
+
|
| 395 |
+
# Step 3: Generate prompts in parallel
|
| 396 |
+
status_text.text("Generating prompts from transcriptions...")
|
| 397 |
+
status_message.markdown("✍️ **Creating image descriptions...**")
|
| 398 |
+
if parallel_processing:
|
| 399 |
+
with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor:
|
| 400 |
+
# Create a partial function with the prompt generator and aspect ratio
|
| 401 |
+
prompt_func = partial(generate_prompt_for_segment,
|
| 402 |
+
prompt_generator=prompt_generator,
|
| 403 |
+
aspect_ratio=selected_aspect_ratio)
|
| 404 |
+
# Generate prompts in parallel
|
| 405 |
+
prompts = list(executor.map(prompt_func, transcriptions))
|
| 406 |
+
else:
|
| 407 |
+
prompts = []
|
| 408 |
+
for trans in transcriptions:
|
| 409 |
+
try:
|
| 410 |
+
prompt = prompt_generator.generate_optimized_prompt(trans, selected_aspect_ratio)
|
| 411 |
+
prompts.append(prompt)
|
| 412 |
+
except Exception as e:
|
| 413 |
+
st.warning(f"Error generating prompt: {str(e)}. Using fallback prompt.")
|
| 414 |
+
prompts.append(f"{trans}, visual scene, detailed, vibrant, cinematic")
|
| 415 |
+
|
| 416 |
+
# Display prompts with better styling
|
| 417 |
+
progress_bar.progress(40)
|
| 418 |
+
st.markdown("### 🖋️ Generated Prompts")
|
| 419 |
+
for i, prompt in enumerate(prompts):
|
| 420 |
+
st.markdown(f"""
|
| 421 |
+
<div style="background-color: #e8f4f8; padding: 10px; border-radius: 5px; margin-bottom: 10px;">
|
| 422 |
+
<strong>Prompt {i+1}:</strong> {prompt}
|
| 423 |
+
</div>
|
| 424 |
+
""", unsafe_allow_html=True)
|
| 425 |
+
|
| 426 |
+
# Step 4: Generate images in parallel
|
| 427 |
+
status_text.text("Generating images from prompts...")
|
| 428 |
+
status_message.markdown("🎨 **Creating images...**")
|
| 429 |
+
if parallel_processing:
|
| 430 |
+
with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor:
|
| 431 |
+
# Create a partial function with the image generator
|
| 432 |
+
image_func = partial(generate_image_for_prompt, image_generator=image_generator)
|
| 433 |
+
# Generate images in parallel
|
| 434 |
+
images = list(executor.map(image_func, prompts))
|
| 435 |
+
else:
|
| 436 |
+
images = []
|
| 437 |
+
for i, prompt in enumerate(prompts):
|
| 438 |
+
status_text.text(f"Generating image {i+1}/{len(prompts)}...")
|
| 439 |
+
try:
|
| 440 |
+
img_path = image_generator.generate_image(prompt)
|
| 441 |
+
images.append(img_path)
|
| 442 |
+
except Exception as e:
|
| 443 |
+
st.warning(f"Error generating image: {str(e)}. Using fallback image.")
|
| 444 |
+
# Create a fallback image
|
| 445 |
+
from PIL import Image, ImageDraw
|
| 446 |
+
img = Image.new('RGB', image_generator.target_size, color=(240, 240, 240))
|
| 447 |
+
draw = ImageDraw.Draw(img)
|
| 448 |
+
draw.text((10, 10), prompt[:50], fill=(0, 0, 0))
|
| 449 |
+
path = f"temp/fallback_{int(time.time() * 1000)}.png"
|
| 450 |
+
img.save(path)
|
| 451 |
+
images.append(path)
|
| 452 |
+
|
| 453 |
+
# Display images with better styling
|
| 454 |
+
progress_bar.progress(60)
|
| 455 |
+
st.markdown("### 🖼️ Generated Images")
|
| 456 |
+
image_cols = st.columns(min(len(images), 3))
|
| 457 |
+
for i, img_path in enumerate(images):
|
| 458 |
+
with image_cols[i % len(image_cols)]:
|
| 459 |
+
st.image(img_path, caption=f"Image {i+1}", use_column_width=True)
|
| 460 |
+
|
| 461 |
+
# Step 5: Add animations in parallel
|
| 462 |
+
status_text.text("Adding animations to images...")
|
| 463 |
+
status_message.markdown("✨ **Adding animations...**")
|
| 464 |
+
if parallel_processing:
|
| 465 |
+
with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor:
|
| 466 |
+
# Create a partial function with the animator and animation type
|
| 467 |
+
animate_func = partial(animate_image, animator=animator, animation_type=animation_type)
|
| 468 |
+
# Animate images in parallel
|
| 469 |
+
animated_frames = list(executor.map(animate_func, images))
|
| 470 |
+
else:
|
| 471 |
+
animated_frames = []
|
| 472 |
+
for i, img_path in enumerate(images):
|
| 473 |
+
status_text.text(f"Animating image {i+1}/{len(images)}...")
|
| 474 |
+
try:
|
| 475 |
+
frames = animator.animate_single_image(img_path, animation_type)
|
| 476 |
+
animated_frames.append(frames)
|
| 477 |
+
except Exception as e:
|
| 478 |
+
st.warning(f"Error animating image: {str(e)}. Using static frames.")
|
| 479 |
+
# Create a sequence of identical frames as fallback
|
| 480 |
+
frames = []
|
| 481 |
+
for _ in range(10):
|
| 482 |
+
frames.append(img_path)
|
| 483 |
+
animated_frames.append(frames)
|
| 484 |
+
|
| 485 |
+
progress_bar.progress(80)
|
| 486 |
+
|
| 487 |
+
# Step 6: Create video
|
| 488 |
+
status_text.text("Creating final video...")
|
| 489 |
+
status_message.markdown("🎬 **Assembling video...**")
|
| 490 |
+
output_video = video_creator.create_video_from_frames(
|
| 491 |
+
animated_frames,
|
| 492 |
+
audio_file,
|
| 493 |
+
segments=transcriptions,
|
| 494 |
+
timestamps=timestamps,
|
| 495 |
+
parallel=parallel_processing,
|
| 496 |
+
max_workers=max_workers
|
| 497 |
+
)
|
| 498 |
+
|
| 499 |
+
# Check if output is an error file
|
| 500 |
+
if output_video.endswith('.txt'):
|
| 501 |
+
with open(output_video, 'r') as f:
|
| 502 |
+
error_message = f.read()
|
| 503 |
+
st.error(f"Error creating video: {error_message}")
|
| 504 |
+
st.stop()
|
| 505 |
+
|
| 506 |
+
# Optimize video if needed
|
| 507 |
+
if video_quality != "High":
|
| 508 |
+
status_text.text("Optimizing video for web...")
|
| 509 |
+
status_message.markdown("⚙️ **Optimizing video...**")
|
| 510 |
+
output_video = video_creator.optimize_video(
|
| 511 |
+
output_video,
|
| 512 |
+
bitrate=bitrate,
|
| 513 |
+
threads=max_workers
|
| 514 |
+
)
|
| 515 |
+
|
| 516 |
+
# Cache the result if caching is enabled
|
| 517 |
+
if use_caching:
|
| 518 |
+
import shutil
|
| 519 |
+
cached_path = result_cache.get_cache_path(cache_key, ".mp4")
|
| 520 |
+
shutil.copy(output_video, cached_path)
|
| 521 |
+
|
| 522 |
+
progress_bar.progress(100)
|
| 523 |
+
status_text.text("Video creation complete!")
|
| 524 |
+
status_message.markdown("✅ **Done!**")
|
| 525 |
+
|
| 526 |
+
# Step 7: Display and provide download link with better styling
|
| 527 |
+
st.markdown("### 🎥 Your Video")
|
| 528 |
+
st.video(output_video)
|
| 529 |
+
|
| 530 |
+
st.markdown("### 📥 Download")
|
| 531 |
+
with open(output_video, "rb") as file:
|
| 532 |
+
st.download_button(
|
| 533 |
+
label="📥 Download Video",
|
| 534 |
+
data=file,
|
| 535 |
+
file_name=f"audio_to_video_{selected_aspect_ratio.replace(':', '_')}.mp4",
|
| 536 |
+
mime="video/mp4",
|
| 537 |
+
use_container_width=True
|
| 538 |
+
)
|
| 539 |
+
|
| 540 |
+
# Performance metrics
|
| 541 |
+
st.markdown("### ⏱️ Performance Metrics")
|
| 542 |
+
st.info(f"""
|
| 543 |
+
- Video Format: {aspect_ratio}
|
| 544 |
+
- Parallel Processing: {'Enabled' if parallel_processing else 'Disabled'}
|
| 545 |
+
- Workers: {max_workers}
|
| 546 |
+
- Image Size: {actual_image_size[0]}x{actual_image_size[1]}
|
| 547 |
+
- Inference Steps: {inference_steps}
|
| 548 |
+
- Video Quality: {video_quality}
|
| 549 |
+
""")
|
| 550 |
+
|
| 551 |
+
# Clean up temporary files
|
| 552 |
+
status_text.text("Cleaning up temporary files...")
|
| 553 |
+
for path in images + [p for frames in animated_frames for p in frames]:
|
| 554 |
+
if os.path.exists(path):
|
| 555 |
+
try:
|
| 556 |
+
os.remove(path)
|
| 557 |
+
except:
|
| 558 |
+
pass
|
| 559 |
+
|
| 560 |
+
status_text.text("All done! Your video is ready for download.")
|
| 561 |
+
|
| 562 |
+
except Exception as e:
|
| 563 |
+
st.error(f"An error occurred: {str(e)}")
|
| 564 |
+
st.exception(e)
|
| 565 |
+
|
| 566 |
+
# Provide troubleshooting tips
|
| 567 |
+
st.markdown("### 🔧 Troubleshooting Tips")
|
| 568 |
+
st.info("""
|
| 569 |
+
- Try reducing the number of segments
|
| 570 |
+
- Use a smaller image size
|
| 571 |
+
- Reduce inference steps
|
| 572 |
+
- Make sure your audio file is in a supported format
|
| 573 |
+
- Clear the cache and try again
|
| 574 |
+
""")
|
| 575 |
+
|
| 576 |
+
if __name__ == "__main__":
|
| 577 |
+
main()
|
image_generator.py
CHANGED
|
@@ -2,7 +2,7 @@ import streamlit as st
|
|
| 2 |
import torch
|
| 3 |
import os
|
| 4 |
import numpy as np
|
| 5 |
-
from PIL import Image
|
| 6 |
import time
|
| 7 |
from concurrent.futures import ThreadPoolExecutor
|
| 8 |
from functools import partial
|
|
@@ -114,6 +114,48 @@ class ImageGenerator:
|
|
| 114 |
# Default to original size
|
| 115 |
return base_size
|
| 116 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
def generate_image(self, prompt, output_dir="temp"):
|
| 118 |
"""Generate a single image from a prompt"""
|
| 119 |
# Ensure output directory exists
|
|
@@ -134,9 +176,12 @@ class ImageGenerator:
|
|
| 134 |
# Resize to target size for consistency and performance
|
| 135 |
if image.size != self.target_size:
|
| 136 |
image = image.resize(self.target_size, Image.LANCZOS)
|
|
|
|
|
|
|
|
|
|
| 137 |
else:
|
| 138 |
# Fallback: Create a colored gradient image with text
|
| 139 |
-
from PIL import Image, ImageDraw,
|
| 140 |
|
| 141 |
# Create a base image with gradient background
|
| 142 |
image = Image.new('RGB', self.target_size, color=(240, 240, 240))
|
|
@@ -242,6 +287,9 @@ class ImageGenerator:
|
|
| 242 |
# Resize to target size
|
| 243 |
img = img.resize(target_size, Image.LANCZOS)
|
| 244 |
|
|
|
|
|
|
|
|
|
|
| 245 |
# Save optimized image
|
| 246 |
img.save(image_path)
|
| 247 |
|
|
|
|
| 2 |
import torch
|
| 3 |
import os
|
| 4 |
import numpy as np
|
| 5 |
+
from PIL import Image, ImageEnhance, ImageFilter
|
| 6 |
import time
|
| 7 |
from concurrent.futures import ThreadPoolExecutor
|
| 8 |
from functools import partial
|
|
|
|
| 114 |
# Default to original size
|
| 115 |
return base_size
|
| 116 |
|
| 117 |
+
def apply_cinematic_effects(self, image):
|
| 118 |
+
"""Apply cinematic effects to enhance the image quality"""
|
| 119 |
+
try:
|
| 120 |
+
# Enhance contrast slightly
|
| 121 |
+
enhancer = ImageEnhance.Contrast(image)
|
| 122 |
+
image = enhancer.enhance(1.2)
|
| 123 |
+
|
| 124 |
+
# Enhance color saturation slightly
|
| 125 |
+
enhancer = ImageEnhance.Color(image)
|
| 126 |
+
image = enhancer.enhance(1.1)
|
| 127 |
+
|
| 128 |
+
# Add subtle vignette effect
|
| 129 |
+
# Create a radial gradient mask
|
| 130 |
+
mask = Image.new('L', image.size, 255)
|
| 131 |
+
draw = ImageDraw.Draw(mask)
|
| 132 |
+
|
| 133 |
+
width, height = image.size
|
| 134 |
+
center_x, center_y = width // 2, height // 2
|
| 135 |
+
max_radius = min(width, height) // 2
|
| 136 |
+
|
| 137 |
+
for y in range(height):
|
| 138 |
+
for x in range(width):
|
| 139 |
+
# Calculate distance from center
|
| 140 |
+
distance = np.sqrt((x - center_x)**2 + (y - center_y)**2)
|
| 141 |
+
# Create vignette effect (darker at edges)
|
| 142 |
+
intensity = int(255 * (1 - 0.3 * (distance / max_radius)**2))
|
| 143 |
+
mask.putpixel((x, y), intensity)
|
| 144 |
+
|
| 145 |
+
# Apply the mask
|
| 146 |
+
image = Image.composite(image, Image.new('RGB', image.size, (0, 0, 0)), mask)
|
| 147 |
+
|
| 148 |
+
# Add subtle film grain
|
| 149 |
+
grain = Image.effect_noise((image.width, image.height), 10)
|
| 150 |
+
grain = grain.convert('L')
|
| 151 |
+
grain = grain.filter(ImageFilter.GaussianBlur(radius=1))
|
| 152 |
+
image = Image.blend(image, Image.composite(image, Image.new('RGB', image.size, (128, 128, 128)), grain), 0.05)
|
| 153 |
+
|
| 154 |
+
return image
|
| 155 |
+
except Exception as e:
|
| 156 |
+
# If effects fail, return original image
|
| 157 |
+
return image
|
| 158 |
+
|
| 159 |
def generate_image(self, prompt, output_dir="temp"):
|
| 160 |
"""Generate a single image from a prompt"""
|
| 161 |
# Ensure output directory exists
|
|
|
|
| 176 |
# Resize to target size for consistency and performance
|
| 177 |
if image.size != self.target_size:
|
| 178 |
image = image.resize(self.target_size, Image.LANCZOS)
|
| 179 |
+
|
| 180 |
+
# Apply cinematic effects
|
| 181 |
+
image = self.apply_cinematic_effects(image)
|
| 182 |
else:
|
| 183 |
# Fallback: Create a colored gradient image with text
|
| 184 |
+
from PIL import Image, ImageDraw, ImageFilter
|
| 185 |
|
| 186 |
# Create a base image with gradient background
|
| 187 |
image = Image.new('RGB', self.target_size, color=(240, 240, 240))
|
|
|
|
| 287 |
# Resize to target size
|
| 288 |
img = img.resize(target_size, Image.LANCZOS)
|
| 289 |
|
| 290 |
+
# Apply cinematic effects
|
| 291 |
+
img = self.apply_cinematic_effects(img)
|
| 292 |
+
|
| 293 |
# Save optimized image
|
| 294 |
img.save(image_path)
|
| 295 |
|
prompt_generator.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
import torch
|
| 3 |
-
from transformers import
|
| 4 |
|
| 5 |
class PromptGenerator:
|
| 6 |
def __init__(self):
|
|
@@ -36,11 +36,11 @@ class PromptGenerator:
|
|
| 36 |
|
| 37 |
return self.model, self.tokenizer
|
| 38 |
|
| 39 |
-
def
|
| 40 |
-
"""Generate
|
| 41 |
# Check cache first
|
| 42 |
import hashlib
|
| 43 |
-
cache_key = hashlib.md5(transcription.encode()).hexdigest()
|
| 44 |
|
| 45 |
if cache_key in self.prompt_cache:
|
| 46 |
return self.prompt_cache[cache_key]
|
|
@@ -49,13 +49,91 @@ class PromptGenerator:
|
|
| 49 |
if not transcription.strip():
|
| 50 |
return ""
|
| 51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
try:
|
| 53 |
# Try to use the model if available
|
| 54 |
model, tokenizer = self.load_model()
|
| 55 |
|
| 56 |
if model is not None and tokenizer is not None:
|
| 57 |
# Create a prompt template focused on visual elements
|
| 58 |
-
template = f"
|
| 59 |
|
| 60 |
# Tokenize
|
| 61 |
inputs = tokenizer(template, return_tensors="pt")
|
|
@@ -74,24 +152,32 @@ class PromptGenerator:
|
|
| 74 |
generated_text = generated_text.replace(template, "").strip()
|
| 75 |
|
| 76 |
# Create an optimized prompt with style keywords
|
| 77 |
-
|
| 78 |
else:
|
| 79 |
-
# Fallback method using
|
| 80 |
-
|
| 81 |
-
words = transcription.split()
|
| 82 |
-
# Add visual keywords
|
| 83 |
-
prompt = f"{transcription}, visual scene, detailed, vibrant, cinematic"
|
| 84 |
except Exception as e:
|
| 85 |
st.warning(f"Error generating prompt: {str(e)}. Using fallback method.")
|
| 86 |
# Fallback to a simple prompt
|
| 87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
|
| 89 |
# Cache the result
|
| 90 |
-
self.prompt_cache[cache_key] =
|
| 91 |
|
| 92 |
-
return
|
| 93 |
|
| 94 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
"""Generate image prompts from the transcription"""
|
| 96 |
# Split text into segments
|
| 97 |
words = text.split()
|
|
@@ -109,22 +195,27 @@ class PromptGenerator:
|
|
| 109 |
prompts = []
|
| 110 |
for segment in segments:
|
| 111 |
# Create an enhanced prompt
|
| 112 |
-
enhanced_prompt = self.
|
| 113 |
prompts.append(enhanced_prompt)
|
| 114 |
|
| 115 |
return prompts, segments
|
| 116 |
|
| 117 |
-
def generate_optimized_prompts(self, transcriptions, parallel=False, max_workers=4):
|
| 118 |
"""Generate optimized prompts from transcribed segments with parallel processing"""
|
| 119 |
import concurrent.futures
|
| 120 |
|
| 121 |
if parallel and len(transcriptions) > 1:
|
| 122 |
# Process in parallel
|
| 123 |
with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor:
|
| 124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
else:
|
| 126 |
# Process sequentially
|
| 127 |
-
prompts = [self.
|
| 128 |
|
| 129 |
return prompts
|
| 130 |
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import torch
|
| 3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 4 |
|
| 5 |
class PromptGenerator:
|
| 6 |
def __init__(self):
|
|
|
|
| 36 |
|
| 37 |
return self.model, self.tokenizer
|
| 38 |
|
| 39 |
+
def generate_hyper_realistic_prompt(self, transcription, aspect_ratio="16:9"):
|
| 40 |
+
"""Generate a hyper-realistic prompt from a transcription with cinematic quality"""
|
| 41 |
# Check cache first
|
| 42 |
import hashlib
|
| 43 |
+
cache_key = hashlib.md5((transcription + aspect_ratio).encode()).hexdigest()
|
| 44 |
|
| 45 |
if cache_key in self.prompt_cache:
|
| 46 |
return self.prompt_cache[cache_key]
|
|
|
|
| 49 |
if not transcription.strip():
|
| 50 |
return ""
|
| 51 |
|
| 52 |
+
# Base prompt components
|
| 53 |
+
base_prompt = transcription.strip()
|
| 54 |
+
|
| 55 |
+
# Hyper-realism keywords
|
| 56 |
+
realism_keywords = [
|
| 57 |
+
"hyper realistic",
|
| 58 |
+
"photo realistic",
|
| 59 |
+
"ultra detailed",
|
| 60 |
+
"hyper detailed textures",
|
| 61 |
+
"8K resolution"
|
| 62 |
+
]
|
| 63 |
+
|
| 64 |
+
# Lighting based on content analysis
|
| 65 |
+
lighting_options = {
|
| 66 |
+
"warm": ["golden hour glow", "warm sunlight", "sunset lighting", "soft warm glow"],
|
| 67 |
+
"dramatic": ["moody overcast", "dramatic lighting", "high contrast", "film noir shadows"],
|
| 68 |
+
"historical": ["candle light", "gas lamps", "torch glow", "lantern light", "flickering light"],
|
| 69 |
+
"modern": ["harsh industrial lighting", "fluorescent lighting", "neon glow", "studio lighting"]
|
| 70 |
+
}
|
| 71 |
+
|
| 72 |
+
# Camera effects
|
| 73 |
+
camera_effects = [
|
| 74 |
+
"shallow depth of field",
|
| 75 |
+
"film grain",
|
| 76 |
+
"cinematic composition"
|
| 77 |
+
]
|
| 78 |
+
|
| 79 |
+
# Environmental details
|
| 80 |
+
environmental_details = [
|
| 81 |
+
"atmospheric",
|
| 82 |
+
"detailed environment",
|
| 83 |
+
"realistic textures",
|
| 84 |
+
"natural lighting"
|
| 85 |
+
]
|
| 86 |
+
|
| 87 |
+
# Material details
|
| 88 |
+
material_details = [
|
| 89 |
+
"detailed materials",
|
| 90 |
+
"realistic textures",
|
| 91 |
+
"natural wear and tear"
|
| 92 |
+
]
|
| 93 |
+
|
| 94 |
+
# Analyze transcription to determine appropriate lighting and mood
|
| 95 |
+
lower_trans = transcription.lower()
|
| 96 |
+
|
| 97 |
+
# Select lighting based on content
|
| 98 |
+
selected_lighting = []
|
| 99 |
+
if any(word in lower_trans for word in ["sunset", "warm", "evening", "afternoon", "golden"]):
|
| 100 |
+
selected_lighting = lighting_options["warm"]
|
| 101 |
+
elif any(word in lower_trans for word in ["dramatic", "dark", "night", "shadow", "mystery", "tension"]):
|
| 102 |
+
selected_lighting = lighting_options["dramatic"]
|
| 103 |
+
elif any(word in lower_trans for word in ["history", "ancient", "medieval", "old", "traditional", "past"]):
|
| 104 |
+
selected_lighting = lighting_options["historical"]
|
| 105 |
+
else:
|
| 106 |
+
selected_lighting = lighting_options["modern"]
|
| 107 |
+
|
| 108 |
+
# Select a random lighting keyword from the chosen category
|
| 109 |
+
import random
|
| 110 |
+
lighting_keyword = random.choice(selected_lighting)
|
| 111 |
+
|
| 112 |
+
# Select a random camera effect
|
| 113 |
+
camera_effect = random.choice(camera_effects)
|
| 114 |
+
|
| 115 |
+
# Select environmental details based on aspect ratio
|
| 116 |
+
if aspect_ratio == "16:9":
|
| 117 |
+
# For landscape, emphasize wide environmental shots
|
| 118 |
+
environmental_keyword = "wide angle " + random.choice(environmental_details)
|
| 119 |
+
elif aspect_ratio == "9:16":
|
| 120 |
+
# For portrait, emphasize vertical composition
|
| 121 |
+
environmental_keyword = "vertical composition " + random.choice(environmental_details)
|
| 122 |
+
else:
|
| 123 |
+
# For square, balanced composition
|
| 124 |
+
environmental_keyword = "balanced composition " + random.choice(environmental_details)
|
| 125 |
+
|
| 126 |
+
# Material detail
|
| 127 |
+
material_keyword = random.choice(material_details)
|
| 128 |
+
|
| 129 |
+
# Construct the enhanced prompt
|
| 130 |
try:
|
| 131 |
# Try to use the model if available
|
| 132 |
model, tokenizer = self.load_model()
|
| 133 |
|
| 134 |
if model is not None and tokenizer is not None:
|
| 135 |
# Create a prompt template focused on visual elements
|
| 136 |
+
template = f"Create a hyper-realistic visual scene for: '{base_prompt}'"
|
| 137 |
|
| 138 |
# Tokenize
|
| 139 |
inputs = tokenizer(template, return_tensors="pt")
|
|
|
|
| 152 |
generated_text = generated_text.replace(template, "").strip()
|
| 153 |
|
| 154 |
# Create an optimized prompt with style keywords
|
| 155 |
+
scene_description = f"{base_prompt} {generated_text}"
|
| 156 |
else:
|
| 157 |
+
# Fallback method using the base prompt
|
| 158 |
+
scene_description = base_prompt
|
|
|
|
|
|
|
|
|
|
| 159 |
except Exception as e:
|
| 160 |
st.warning(f"Error generating prompt: {str(e)}. Using fallback method.")
|
| 161 |
# Fallback to a simple prompt
|
| 162 |
+
scene_description = base_prompt
|
| 163 |
+
|
| 164 |
+
# Combine all elements into a hyper-realistic prompt
|
| 165 |
+
realism_part = ", ".join(random.sample(realism_keywords, 3)) # Select 3 random realism keywords
|
| 166 |
+
|
| 167 |
+
# Final prompt construction with all elements
|
| 168 |
+
enhanced_prompt = f"{scene_description}, {realism_part}, {lighting_keyword}, {camera_effect}, {environmental_keyword}, {material_keyword}"
|
| 169 |
|
| 170 |
# Cache the result
|
| 171 |
+
self.prompt_cache[cache_key] = enhanced_prompt
|
| 172 |
|
| 173 |
+
return enhanced_prompt
|
| 174 |
|
| 175 |
+
def generate_optimized_prompt(self, transcription, aspect_ratio="16:9"):
|
| 176 |
+
"""Generate an optimized prompt from a single transcription"""
|
| 177 |
+
# This is now a wrapper for the hyper-realistic prompt generator
|
| 178 |
+
return self.generate_hyper_realistic_prompt(transcription, aspect_ratio)
|
| 179 |
+
|
| 180 |
+
def generate_prompts(self, text, num_segments=5, aspect_ratio="16:9"):
|
| 181 |
"""Generate image prompts from the transcription"""
|
| 182 |
# Split text into segments
|
| 183 |
words = text.split()
|
|
|
|
| 195 |
prompts = []
|
| 196 |
for segment in segments:
|
| 197 |
# Create an enhanced prompt
|
| 198 |
+
enhanced_prompt = self.generate_hyper_realistic_prompt(segment, aspect_ratio)
|
| 199 |
prompts.append(enhanced_prompt)
|
| 200 |
|
| 201 |
return prompts, segments
|
| 202 |
|
| 203 |
+
def generate_optimized_prompts(self, transcriptions, parallel=False, max_workers=4, aspect_ratio="16:9"):
|
| 204 |
"""Generate optimized prompts from transcribed segments with parallel processing"""
|
| 205 |
import concurrent.futures
|
| 206 |
|
| 207 |
if parallel and len(transcriptions) > 1:
|
| 208 |
# Process in parallel
|
| 209 |
with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor:
|
| 210 |
+
# Create a function that includes aspect ratio
|
| 211 |
+
def generate_with_aspect(trans):
|
| 212 |
+
return self.generate_hyper_realistic_prompt(trans, aspect_ratio)
|
| 213 |
+
|
| 214 |
+
# Map with the new function
|
| 215 |
+
prompts = list(executor.map(generate_with_aspect, transcriptions))
|
| 216 |
else:
|
| 217 |
# Process sequentially
|
| 218 |
+
prompts = [self.generate_hyper_realistic_prompt(trans, aspect_ratio) for trans in transcriptions]
|
| 219 |
|
| 220 |
return prompts
|
| 221 |
|
requirements.txt
CHANGED
|
@@ -1,13 +1,16 @@
|
|
| 1 |
-
streamlit
|
| 2 |
-
transformers
|
| 3 |
-
torch
|
| 4 |
-
torchaudio
|
| 5 |
-
diffusers
|
| 6 |
-
accelerate
|
| 7 |
moviepy==1.0.3
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
streamlit==1.25.0
|
| 2 |
+
transformers==4.30.2
|
| 3 |
+
torch==2.0.1
|
| 4 |
+
torchaudio==2.0.2
|
| 5 |
+
diffusers==0.19.3
|
| 6 |
+
accelerate==0.21.0
|
| 7 |
moviepy==1.0.3
|
| 8 |
+
pillow==9.5.0
|
| 9 |
+
numpy==1.24.3
|
| 10 |
+
scipy==1.10.1
|
| 11 |
+
matplotlib==3.7.2
|
| 12 |
+
librosa==0.10.0.post2
|
| 13 |
+
soundfile==0.12.1
|
| 14 |
+
huggingface-hub==0.16.4
|
| 15 |
+
ftfy==6.1.1
|
| 16 |
+
regex==2023.6.3
|
transcriber.py
CHANGED
|
@@ -1,109 +1,65 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
-
import torch
|
| 3 |
-
from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
|
| 4 |
-
import librosa
|
| 5 |
import numpy as np
|
|
|
|
|
|
|
| 6 |
import tempfile
|
| 7 |
import os
|
| 8 |
from concurrent.futures import ThreadPoolExecutor
|
|
|
|
| 9 |
|
| 10 |
class AudioTranscriber:
|
| 11 |
def __init__(self):
|
| 12 |
self.model = None
|
| 13 |
self.processor = None
|
| 14 |
-
self.pipe = None
|
| 15 |
self.transcription_cache = {}
|
| 16 |
|
| 17 |
def load_model(self):
|
| 18 |
"""Load a lightweight transcription model"""
|
| 19 |
-
if self.
|
| 20 |
-
with st.spinner("Loading transcription model...
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
)
|
| 35 |
-
self.processor = AutoProcessor.from_pretrained(model_id)
|
| 36 |
-
|
| 37 |
-
# Create pipeline for efficient processing
|
| 38 |
-
self.pipe = pipeline(
|
| 39 |
-
"automatic-speech-recognition",
|
| 40 |
-
model=self.model,
|
| 41 |
-
tokenizer=self.processor.tokenizer,
|
| 42 |
-
feature_extractor=self.processor.feature_extractor,
|
| 43 |
-
max_new_tokens=128,
|
| 44 |
-
chunk_length_s=30,
|
| 45 |
-
batch_size=16,
|
| 46 |
-
device=device,
|
| 47 |
-
)
|
| 48 |
-
return self.pipe
|
| 49 |
-
|
| 50 |
-
def transcribe(self, audio_file):
|
| 51 |
-
"""Transcribe the audio file using the loaded model"""
|
| 52 |
-
# Generate a cache key based on the audio file
|
| 53 |
-
import hashlib
|
| 54 |
-
cache_key = hashlib.md5(audio_file.getvalue()).hexdigest()
|
| 55 |
-
|
| 56 |
-
# Check if result is in cache
|
| 57 |
-
if cache_key in self.transcription_cache:
|
| 58 |
-
return self.transcription_cache[cache_key]
|
| 59 |
|
| 60 |
-
|
| 61 |
-
pipe = self.load_model()
|
| 62 |
-
|
| 63 |
-
# Save the uploaded file to a temporary location
|
| 64 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
|
| 65 |
-
tmp_file.write(audio_file.getvalue())
|
| 66 |
-
tmp_path = tmp_file.name
|
| 67 |
-
|
| 68 |
-
try:
|
| 69 |
-
# Load audio using librosa for processing
|
| 70 |
-
y, sr = librosa.load(tmp_path, sr=16000)
|
| 71 |
-
|
| 72 |
-
# Process in smaller chunks for memory efficiency
|
| 73 |
-
result = pipe(y)
|
| 74 |
-
transcription = result["text"]
|
| 75 |
-
|
| 76 |
-
# Cache the result
|
| 77 |
-
self.transcription_cache[cache_key] = transcription
|
| 78 |
-
|
| 79 |
-
return transcription
|
| 80 |
-
finally:
|
| 81 |
-
# Clean up temporary file
|
| 82 |
-
if os.path.exists(tmp_path):
|
| 83 |
-
os.unlink(tmp_path)
|
| 84 |
|
| 85 |
-
def segment_audio(self, audio_file, num_segments=5):
|
| 86 |
"""Segment the audio file into chunks for processing"""
|
| 87 |
-
# Save the uploaded
|
| 88 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
|
| 89 |
tmp_file.write(audio_file.getvalue())
|
| 90 |
-
|
| 91 |
|
| 92 |
try:
|
| 93 |
-
# Load audio
|
| 94 |
-
y, sr = librosa.load(
|
| 95 |
|
| 96 |
# Get total duration
|
| 97 |
duration = librosa.get_duration(y=y, sr=sr)
|
| 98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
# Calculate segment duration
|
| 100 |
-
segment_duration = duration /
|
| 101 |
|
| 102 |
# Create segments
|
| 103 |
segments = []
|
| 104 |
timestamps = []
|
| 105 |
|
| 106 |
-
for i in range(
|
| 107 |
start_time = i * segment_duration
|
| 108 |
end_time = min((i + 1) * segment_duration, duration)
|
| 109 |
|
|
@@ -117,32 +73,112 @@ class AudioTranscriber:
|
|
| 117 |
timestamps.append((start_time, end_time))
|
| 118 |
|
| 119 |
return segments, timestamps
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
finally:
|
| 121 |
# Clean up temporary file
|
| 122 |
-
if os.path.exists(
|
| 123 |
-
|
|
|
|
|
|
|
|
|
|
| 124 |
|
| 125 |
-
def transcribe_segment(self, segment):
|
| 126 |
"""Transcribe a single audio segment"""
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
if parallel and len(segments) > 1:
|
| 136 |
# Process in parallel using ThreadPoolExecutor
|
| 137 |
with ThreadPoolExecutor(max_workers=max_workers) as executor:
|
| 138 |
-
#
|
| 139 |
-
|
|
|
|
|
|
|
|
|
|
| 140 |
else:
|
| 141 |
# Process sequentially
|
| 142 |
transcriptions = []
|
| 143 |
for segment in segments:
|
| 144 |
-
|
| 145 |
-
transcriptions.append(
|
| 146 |
|
| 147 |
return transcriptions
|
| 148 |
|
|
|
|
| 1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
| 2 |
import numpy as np
|
| 3 |
+
import soundfile as sf
|
| 4 |
+
import librosa
|
| 5 |
import tempfile
|
| 6 |
import os
|
| 7 |
from concurrent.futures import ThreadPoolExecutor
|
| 8 |
+
from functools import partial
|
| 9 |
|
| 10 |
class AudioTranscriber:
|
| 11 |
def __init__(self):
|
| 12 |
self.model = None
|
| 13 |
self.processor = None
|
|
|
|
| 14 |
self.transcription_cache = {}
|
| 15 |
|
| 16 |
def load_model(self):
|
| 17 |
"""Load a lightweight transcription model"""
|
| 18 |
+
if self.model is None:
|
| 19 |
+
with st.spinner("Loading transcription model..."):
|
| 20 |
+
try:
|
| 21 |
+
from transformers import pipeline
|
| 22 |
+
|
| 23 |
+
# Use a small model for transcription to save memory
|
| 24 |
+
self.model = pipeline(
|
| 25 |
+
"automatic-speech-recognition",
|
| 26 |
+
model="openai/whisper-small",
|
| 27 |
+
chunk_length_s=30,
|
| 28 |
+
device="cpu"
|
| 29 |
+
)
|
| 30 |
+
except Exception as e:
|
| 31 |
+
st.warning(f"Error loading transcription model: {str(e)}. Using fallback method.")
|
| 32 |
+
self.model = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
+
return self.model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
+
def segment_audio(self, audio_file, num_segments=5, min_segment_duration=3.0):
|
| 37 |
"""Segment the audio file into chunks for processing"""
|
| 38 |
+
# Save the uploaded audio to a temporary file
|
| 39 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
|
| 40 |
tmp_file.write(audio_file.getvalue())
|
| 41 |
+
audio_path = tmp_file.name
|
| 42 |
|
| 43 |
try:
|
| 44 |
+
# Load the audio file
|
| 45 |
+
y, sr = librosa.load(audio_path, sr=None)
|
| 46 |
|
| 47 |
# Get total duration
|
| 48 |
duration = librosa.get_duration(y=y, sr=sr)
|
| 49 |
|
| 50 |
+
# Ensure we don't create segments that are too short
|
| 51 |
+
actual_segments = min(num_segments, int(duration / min_segment_duration))
|
| 52 |
+
if actual_segments < 1:
|
| 53 |
+
actual_segments = 1
|
| 54 |
+
|
| 55 |
# Calculate segment duration
|
| 56 |
+
segment_duration = duration / actual_segments
|
| 57 |
|
| 58 |
# Create segments
|
| 59 |
segments = []
|
| 60 |
timestamps = []
|
| 61 |
|
| 62 |
+
for i in range(actual_segments):
|
| 63 |
start_time = i * segment_duration
|
| 64 |
end_time = min((i + 1) * segment_duration, duration)
|
| 65 |
|
|
|
|
| 73 |
timestamps.append((start_time, end_time))
|
| 74 |
|
| 75 |
return segments, timestamps
|
| 76 |
+
|
| 77 |
+
except Exception as e:
|
| 78 |
+
st.warning(f"Error segmenting audio: {str(e)}. Using simplified segmentation.")
|
| 79 |
+
|
| 80 |
+
# Fallback: Create equal segments
|
| 81 |
+
try:
|
| 82 |
+
y, sr = sf.read(audio_path)
|
| 83 |
+
duration = len(y) / sr
|
| 84 |
+
|
| 85 |
+
# Ensure we don't create segments that are too short
|
| 86 |
+
actual_segments = min(num_segments, int(duration / min_segment_duration))
|
| 87 |
+
if actual_segments < 1:
|
| 88 |
+
actual_segments = 1
|
| 89 |
+
|
| 90 |
+
# Calculate segment duration
|
| 91 |
+
segment_duration = duration / actual_segments
|
| 92 |
+
|
| 93 |
+
# Create segments
|
| 94 |
+
segments = []
|
| 95 |
+
timestamps = []
|
| 96 |
+
|
| 97 |
+
for i in range(actual_segments):
|
| 98 |
+
start_time = i * segment_duration
|
| 99 |
+
end_time = min((i + 1) * segment_duration, duration)
|
| 100 |
+
|
| 101 |
+
# Convert time to samples
|
| 102 |
+
start_sample = int(start_time * sr)
|
| 103 |
+
end_sample = int(end_time * sr)
|
| 104 |
+
|
| 105 |
+
# Extract segment
|
| 106 |
+
segment = y[start_sample:end_sample]
|
| 107 |
+
segments.append(segment)
|
| 108 |
+
timestamps.append((start_time, end_time))
|
| 109 |
+
|
| 110 |
+
return segments, timestamps
|
| 111 |
+
|
| 112 |
+
except Exception as inner_e:
|
| 113 |
+
st.error(f"Critical error in audio segmentation: {str(inner_e)}")
|
| 114 |
+
# Last resort: Create dummy segments
|
| 115 |
+
segments = [np.zeros(16000) for _ in range(num_segments)] # 1-second silent segments
|
| 116 |
+
timestamps = [(i, i+1) for i in range(num_segments)]
|
| 117 |
+
return segments, timestamps
|
| 118 |
finally:
|
| 119 |
# Clean up temporary file
|
| 120 |
+
if os.path.exists(audio_path):
|
| 121 |
+
try:
|
| 122 |
+
os.unlink(audio_path)
|
| 123 |
+
except:
|
| 124 |
+
pass
|
| 125 |
|
| 126 |
+
def transcribe_segment(self, segment, sr=16000):
|
| 127 |
"""Transcribe a single audio segment"""
|
| 128 |
+
# Generate a cache key based on the audio data
|
| 129 |
+
import hashlib
|
| 130 |
+
cache_key = hashlib.md5(segment.tobytes()).hexdigest()
|
| 131 |
+
|
| 132 |
+
# Check if result is in cache
|
| 133 |
+
if cache_key in self.transcription_cache:
|
| 134 |
+
return self.transcription_cache[cache_key]
|
| 135 |
|
| 136 |
+
try:
|
| 137 |
+
# Load the model if not already loaded
|
| 138 |
+
model = self.load_model()
|
| 139 |
+
|
| 140 |
+
if model is not None:
|
| 141 |
+
# Save segment to a temporary file
|
| 142 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
|
| 143 |
+
sf.write(tmp_file.name, segment, sr)
|
| 144 |
+
segment_path = tmp_file.name
|
| 145 |
+
|
| 146 |
+
# Transcribe using the model
|
| 147 |
+
result = model(segment_path)
|
| 148 |
+
transcription = result["text"]
|
| 149 |
+
|
| 150 |
+
# Clean up temporary file
|
| 151 |
+
if os.path.exists(segment_path):
|
| 152 |
+
os.unlink(segment_path)
|
| 153 |
+
else:
|
| 154 |
+
# Fallback: Return empty string or placeholder
|
| 155 |
+
transcription = "Audio content"
|
| 156 |
+
except Exception as e:
|
| 157 |
+
st.warning(f"Error transcribing segment: {str(e)}. Using fallback method.")
|
| 158 |
+
# Fallback: Return empty string or placeholder
|
| 159 |
+
transcription = "Audio content"
|
| 160 |
+
|
| 161 |
+
# Cache the result
|
| 162 |
+
self.transcription_cache[cache_key] = transcription
|
| 163 |
+
|
| 164 |
+
return transcription
|
| 165 |
+
|
| 166 |
+
def transcribe_segments(self, segments, sr=16000, parallel=False, max_workers=4):
|
| 167 |
+
"""Transcribe multiple audio segments with parallel processing"""
|
| 168 |
if parallel and len(segments) > 1:
|
| 169 |
# Process in parallel using ThreadPoolExecutor
|
| 170 |
with ThreadPoolExecutor(max_workers=max_workers) as executor:
|
| 171 |
+
# Create a partial function with fixed sample rate
|
| 172 |
+
transcribe_func = partial(self.transcribe_segment, sr=sr)
|
| 173 |
+
|
| 174 |
+
# Map and collect results
|
| 175 |
+
transcriptions = list(executor.map(transcribe_func, segments))
|
| 176 |
else:
|
| 177 |
# Process sequentially
|
| 178 |
transcriptions = []
|
| 179 |
for segment in segments:
|
| 180 |
+
transcription = self.transcribe_segment(segment, sr)
|
| 181 |
+
transcriptions.append(transcription)
|
| 182 |
|
| 183 |
return transcriptions
|
| 184 |
|
video_creator.py
CHANGED
|
@@ -11,41 +11,124 @@ class VideoCreator:
|
|
| 11 |
# Ensure output directory exists
|
| 12 |
os.makedirs("outputs", exist_ok=True)
|
| 13 |
self.video_cache = {}
|
|
|
|
| 14 |
|
| 15 |
-
def
|
| 16 |
-
"""
|
| 17 |
-
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
-
#
|
| 21 |
-
|
| 22 |
|
| 23 |
-
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
try:
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
|
|
|
|
|
|
| 42 |
|
| 43 |
def create_video_from_frames(self, animated_frames, audio_file, segments=None, timestamps=None,
|
| 44 |
output_dir="outputs", parallel=False, max_workers=4):
|
| 45 |
"""Create a video from animated frames synchronized with audio using parallel processing"""
|
| 46 |
# Generate a cache key based on inputs
|
| 47 |
import hashlib
|
| 48 |
-
cache_key = f"{hashlib.md5(audio_file.getvalue()).hexdigest()}_{len(animated_frames)}"
|
| 49 |
|
| 50 |
# Check if result is in cache
|
| 51 |
if cache_key in self.video_cache:
|
|
@@ -72,83 +155,156 @@ class VideoCreator:
|
|
| 72 |
# Create video clips for each animated segment
|
| 73 |
video_clips = []
|
| 74 |
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
for i, frames in enumerate(animated_frames):
|
| 81 |
segment_duration = segment_durations[min(i, len(segment_durations)-1)]
|
| 82 |
segment_text = segments[i] if segments and i < len(segments) else None
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
|
|
|
|
|
|
| 90 |
segment_duration = segment_durations[min(i, len(segment_durations)-1)]
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
video_clips.append(segment_clip)
|
| 95 |
|
| 96 |
# Concatenate all clips
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
|
| 102 |
# Write the result to a file
|
| 103 |
-
output_path = f"{output_dir}/output_video_{int(time.time())}.mp4"
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
|
| 116 |
# Cache the result
|
| 117 |
self.video_cache[cache_key] = output_path
|
| 118 |
|
| 119 |
return output_path
|
| 120 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
finally:
|
| 122 |
# Clean up temporary file
|
| 123 |
if os.path.exists(audio_path):
|
| 124 |
-
|
|
|
|
|
|
|
|
|
|
| 125 |
|
| 126 |
-
def optimize_video(self, video_path, target_size=
|
| 127 |
"""Optimize video size and quality for web delivery"""
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
|
| 153 |
def clear_cache(self):
|
| 154 |
"""Clear the video cache"""
|
|
|
|
| 11 |
# Ensure output directory exists
|
| 12 |
os.makedirs("outputs", exist_ok=True)
|
| 13 |
self.video_cache = {}
|
| 14 |
+
self.aspect_ratio = "1:1" # Default aspect ratio
|
| 15 |
|
| 16 |
+
def set_aspect_ratio(self, aspect_ratio):
|
| 17 |
+
"""Set the aspect ratio for video creation"""
|
| 18 |
+
self.aspect_ratio = aspect_ratio
|
| 19 |
+
|
| 20 |
+
def get_video_dimensions(self, base_size=None):
|
| 21 |
+
"""Get video dimensions based on aspect ratio"""
|
| 22 |
+
if base_size is None:
|
| 23 |
+
# Default base sizes for different aspect ratios
|
| 24 |
+
if self.aspect_ratio == "1:1":
|
| 25 |
+
return (640, 640) # Square
|
| 26 |
+
elif self.aspect_ratio == "16:9":
|
| 27 |
+
return (854, 480) # Landscape HD
|
| 28 |
+
elif self.aspect_ratio == "9:16":
|
| 29 |
+
return (480, 854) # Portrait (mobile)
|
| 30 |
+
else:
|
| 31 |
+
return (640, 640) # Default square
|
| 32 |
|
| 33 |
+
# Calculate dimensions based on base size and aspect ratio
|
| 34 |
+
base_pixels = base_size[0] * base_size[1]
|
| 35 |
|
| 36 |
+
if self.aspect_ratio == "1:1":
|
| 37 |
+
# Square format
|
| 38 |
+
side = int(np.sqrt(base_pixels))
|
| 39 |
+
# Ensure even dimensions for video compatibility
|
| 40 |
+
side = side if side % 2 == 0 else side + 1
|
| 41 |
+
return (side, side)
|
| 42 |
+
elif self.aspect_ratio == "16:9":
|
| 43 |
+
# Landscape format
|
| 44 |
+
width = int(np.sqrt(base_pixels * 16 / 9))
|
| 45 |
+
height = int(width * 9 / 16)
|
| 46 |
+
# Ensure even dimensions for video compatibility
|
| 47 |
+
width = width if width % 2 == 0 else width + 1
|
| 48 |
+
height = height if height % 2 == 0 else height + 1
|
| 49 |
+
return (width, height)
|
| 50 |
+
elif self.aspect_ratio == "9:16":
|
| 51 |
+
# Portrait format
|
| 52 |
+
height = int(np.sqrt(base_pixels * 16 / 9))
|
| 53 |
+
width = int(height * 9 / 16)
|
| 54 |
+
# Ensure even dimensions for video compatibility
|
| 55 |
+
width = width if width % 2 == 0 else width + 1
|
| 56 |
+
height = height if height % 2 == 0 else height + 1
|
| 57 |
+
return (width, height)
|
| 58 |
+
else:
|
| 59 |
+
# Default to original size
|
| 60 |
+
return base_size
|
| 61 |
+
|
| 62 |
+
def create_segment_clip(self, frames, segment_duration, segment_text=None):
|
| 63 |
+
"""Create a video clip from frames with optional text overlay"""
|
| 64 |
+
try:
|
| 65 |
+
# Calculate frame duration based on segment duration
|
| 66 |
+
frame_duration = segment_duration / len(frames)
|
| 67 |
+
|
| 68 |
+
# Create a clip from the frames
|
| 69 |
+
segment_clip = ImageSequenceClip(frames, durations=[frame_duration] * len(frames))
|
| 70 |
+
|
| 71 |
+
# Add text overlay if segment text is provided
|
| 72 |
+
if segment_text:
|
| 73 |
+
try:
|
| 74 |
+
# Adjust text size and position based on aspect ratio
|
| 75 |
+
fontsize = 24
|
| 76 |
+
position = ('center', 'bottom')
|
| 77 |
+
|
| 78 |
+
if self.aspect_ratio == "9:16":
|
| 79 |
+
# For portrait, make text smaller and position it lower
|
| 80 |
+
fontsize = 20
|
| 81 |
+
position = ('center', 0.9) # 90% from top
|
| 82 |
+
elif self.aspect_ratio == "16:9":
|
| 83 |
+
# For landscape, position text at bottom
|
| 84 |
+
position = ('center', 0.95) # 95% from top
|
| 85 |
+
|
| 86 |
+
txt_clip = TextClip(
|
| 87 |
+
segment_text,
|
| 88 |
+
fontsize=fontsize,
|
| 89 |
+
color='white',
|
| 90 |
+
bg_color='rgba(0,0,0,0.5)',
|
| 91 |
+
size=(segment_clip.w, None),
|
| 92 |
+
method='caption'
|
| 93 |
+
).set_duration(segment_clip.duration)
|
| 94 |
+
|
| 95 |
+
txt_clip = txt_clip.set_position(position)
|
| 96 |
+
segment_clip = CompositeVideoClip([segment_clip, txt_clip])
|
| 97 |
+
except Exception as e:
|
| 98 |
+
# If TextClip fails, continue without text overlay
|
| 99 |
+
st.warning(f"Could not add text overlay: {str(e)}")
|
| 100 |
+
|
| 101 |
+
return segment_clip
|
| 102 |
+
except Exception as e:
|
| 103 |
+
st.warning(f"Error creating segment clip: {str(e)}. Using fallback method.")
|
| 104 |
+
|
| 105 |
+
# Fallback: Create a simple clip with the first frame
|
| 106 |
try:
|
| 107 |
+
# Use just the first frame if there's an issue with the sequence
|
| 108 |
+
first_frame = frames[0] if frames else None
|
| 109 |
+
if first_frame and os.path.exists(first_frame):
|
| 110 |
+
segment_clip = ImageSequenceClip([first_frame], durations=[segment_duration])
|
| 111 |
+
return segment_clip
|
| 112 |
+
else:
|
| 113 |
+
# Create a blank clip if no frames are available
|
| 114 |
+
from PIL import Image
|
| 115 |
+
blank_img = Image.new('RGB', self.get_video_dimensions(), color=(0, 0, 0))
|
| 116 |
+
blank_path = tempfile.mktemp(suffix='.png')
|
| 117 |
+
blank_img.save(blank_path)
|
| 118 |
+
segment_clip = ImageSequenceClip([blank_path], durations=[segment_duration])
|
| 119 |
+
return segment_clip
|
| 120 |
+
except Exception as inner_e:
|
| 121 |
+
st.error(f"Critical error in fallback clip creation: {str(inner_e)}")
|
| 122 |
+
# Last resort: Create an extremely simple clip
|
| 123 |
+
from moviepy.editor import ColorClip
|
| 124 |
+
return ColorClip(self.get_video_dimensions(), color=(0, 0, 0), duration=segment_duration)
|
| 125 |
|
| 126 |
def create_video_from_frames(self, animated_frames, audio_file, segments=None, timestamps=None,
|
| 127 |
output_dir="outputs", parallel=False, max_workers=4):
|
| 128 |
"""Create a video from animated frames synchronized with audio using parallel processing"""
|
| 129 |
# Generate a cache key based on inputs
|
| 130 |
import hashlib
|
| 131 |
+
cache_key = f"{hashlib.md5(audio_file.getvalue()).hexdigest()}_{len(animated_frames)}_{self.aspect_ratio}"
|
| 132 |
|
| 133 |
# Check if result is in cache
|
| 134 |
if cache_key in self.video_cache:
|
|
|
|
| 155 |
# Create video clips for each animated segment
|
| 156 |
video_clips = []
|
| 157 |
|
| 158 |
+
try:
|
| 159 |
+
if parallel and len(animated_frames) > 1:
|
| 160 |
+
# Process segments in parallel
|
| 161 |
+
with ThreadPoolExecutor(max_workers=max_workers) as executor:
|
| 162 |
+
# Prepare arguments for parallel processing
|
| 163 |
+
args = []
|
| 164 |
+
for i, frames in enumerate(animated_frames):
|
| 165 |
+
segment_duration = segment_durations[min(i, len(segment_durations)-1)]
|
| 166 |
+
segment_text = segments[i] if segments and i < len(segments) else None
|
| 167 |
+
args.append((frames, segment_duration, segment_text))
|
| 168 |
+
|
| 169 |
+
# Process in parallel
|
| 170 |
+
video_clips = list(executor.map(lambda x: self.create_segment_clip(*x), args))
|
| 171 |
+
else:
|
| 172 |
+
# Process segments sequentially
|
| 173 |
for i, frames in enumerate(animated_frames):
|
| 174 |
segment_duration = segment_durations[min(i, len(segment_durations)-1)]
|
| 175 |
segment_text = segments[i] if segments and i < len(segments) else None
|
| 176 |
+
|
| 177 |
+
segment_clip = self.create_segment_clip(frames, segment_duration, segment_text)
|
| 178 |
+
video_clips.append(segment_clip)
|
| 179 |
+
except Exception as e:
|
| 180 |
+
st.warning(f"Error processing video segments: {str(e)}. Using fallback method.")
|
| 181 |
+
|
| 182 |
+
# Fallback: Create a simple clip for each segment
|
| 183 |
+
video_clips = []
|
| 184 |
+
for i, _ in enumerate(animated_frames):
|
| 185 |
segment_duration = segment_durations[min(i, len(segment_durations)-1)]
|
| 186 |
+
from moviepy.editor import ColorClip
|
| 187 |
+
clip = ColorClip(self.get_video_dimensions(), color=(0, 0, 0), duration=segment_duration)
|
| 188 |
+
video_clips.append(clip)
|
|
|
|
| 189 |
|
| 190 |
# Concatenate all clips
|
| 191 |
+
try:
|
| 192 |
+
final_clip = concatenate_videoclips(video_clips)
|
| 193 |
+
|
| 194 |
+
# Set the audio
|
| 195 |
+
final_clip = final_clip.set_audio(audio_clip)
|
| 196 |
+
|
| 197 |
+
# Get target dimensions based on aspect ratio
|
| 198 |
+
target_dimensions = self.get_video_dimensions()
|
| 199 |
+
|
| 200 |
+
# Resize the final clip to match the target dimensions
|
| 201 |
+
final_clip = final_clip.resize(target_dimensions)
|
| 202 |
+
except Exception as e:
|
| 203 |
+
st.warning(f"Error creating final video: {str(e)}. Using fallback method.")
|
| 204 |
+
|
| 205 |
+
# Fallback: Create a simple video with the audio
|
| 206 |
+
from moviepy.editor import ColorClip
|
| 207 |
+
final_clip = ColorClip(self.get_video_dimensions(), color=(0, 0, 0), duration=total_duration)
|
| 208 |
+
final_clip = final_clip.set_audio(audio_clip)
|
| 209 |
|
| 210 |
# Write the result to a file
|
| 211 |
+
output_path = f"{output_dir}/output_video_{self.aspect_ratio.replace(':', '_')}_{int(time.time())}.mp4"
|
| 212 |
+
|
| 213 |
+
try:
|
| 214 |
+
# Use lower resolution and bitrate for faster processing
|
| 215 |
+
final_clip.write_videofile(
|
| 216 |
+
output_path,
|
| 217 |
+
fps=24,
|
| 218 |
+
codec='libx264',
|
| 219 |
+
audio_codec='aac',
|
| 220 |
+
preset='ultrafast', # Faster encoding
|
| 221 |
+
threads=max_workers, # Use multiple threads for encoding
|
| 222 |
+
bitrate='1000k' # Lower bitrate
|
| 223 |
+
)
|
| 224 |
+
except Exception as e:
|
| 225 |
+
st.warning(f"Error writing video file: {str(e)}. Trying with simpler settings.")
|
| 226 |
+
|
| 227 |
+
# Try with even simpler settings
|
| 228 |
+
try:
|
| 229 |
+
final_clip.write_videofile(
|
| 230 |
+
output_path,
|
| 231 |
+
fps=15, # Lower fps
|
| 232 |
+
codec='libx264',
|
| 233 |
+
audio_codec='aac',
|
| 234 |
+
preset='ultrafast',
|
| 235 |
+
threads=2, # Fewer threads
|
| 236 |
+
bitrate='800k' # Lower bitrate
|
| 237 |
+
)
|
| 238 |
+
except Exception as inner_e:
|
| 239 |
+
st.error(f"Critical error writing video: {str(inner_e)}")
|
| 240 |
+
# Create a text file explaining the error
|
| 241 |
+
error_path = f"{output_dir}/error_video_{int(time.time())}.txt"
|
| 242 |
+
with open(error_path, 'w') as f:
|
| 243 |
+
f.write(f"Error creating video: {str(e)}\nSecondary error: {str(inner_e)}")
|
| 244 |
+
return error_path
|
| 245 |
|
| 246 |
# Cache the result
|
| 247 |
self.video_cache[cache_key] = output_path
|
| 248 |
|
| 249 |
return output_path
|
| 250 |
|
| 251 |
+
except Exception as e:
|
| 252 |
+
st.error(f"Critical error in video creation: {str(e)}")
|
| 253 |
+
# Create a text file explaining the error
|
| 254 |
+
error_path = f"{output_dir}/error_video_{int(time.time())}.txt"
|
| 255 |
+
with open(error_path, 'w') as f:
|
| 256 |
+
f.write(f"Error creating video: {str(e)}")
|
| 257 |
+
return error_path
|
| 258 |
finally:
|
| 259 |
# Clean up temporary file
|
| 260 |
if os.path.exists(audio_path):
|
| 261 |
+
try:
|
| 262 |
+
os.unlink(audio_path)
|
| 263 |
+
except:
|
| 264 |
+
pass
|
| 265 |
|
| 266 |
+
def optimize_video(self, video_path, target_size=None, bitrate='1000k', threads=2):
|
| 267 |
"""Optimize video size and quality for web delivery"""
|
| 268 |
+
if not os.path.exists(video_path) or video_path.endswith('.txt'):
|
| 269 |
+
return video_path # Return as is if it's an error file or doesn't exist
|
| 270 |
+
|
| 271 |
+
try:
|
| 272 |
+
from moviepy.editor import VideoFileClip
|
| 273 |
+
|
| 274 |
+
# Load the video
|
| 275 |
+
clip = VideoFileClip(video_path)
|
| 276 |
+
|
| 277 |
+
# If target_size is not provided, use aspect ratio-based dimensions
|
| 278 |
+
if target_size is None:
|
| 279 |
+
target_size = self.get_video_dimensions()
|
| 280 |
+
|
| 281 |
+
# Resize to target size
|
| 282 |
+
clip_resized = clip.resize(target_size)
|
| 283 |
+
|
| 284 |
+
# Save optimized video
|
| 285 |
+
optimized_path = video_path.replace('.mp4', f'_optimized_{int(time.time())}.mp4')
|
| 286 |
+
|
| 287 |
+
try:
|
| 288 |
+
clip_resized.write_videofile(
|
| 289 |
+
optimized_path,
|
| 290 |
+
codec='libx264',
|
| 291 |
+
audio_codec='aac',
|
| 292 |
+
preset='ultrafast',
|
| 293 |
+
threads=threads,
|
| 294 |
+
bitrate=bitrate
|
| 295 |
+
)
|
| 296 |
+
except Exception as e:
|
| 297 |
+
st.warning(f"Error optimizing video: {str(e)}. Using original video.")
|
| 298 |
+
optimized_path = video_path
|
| 299 |
+
|
| 300 |
+
# Close clips to free memory
|
| 301 |
+
clip.close()
|
| 302 |
+
clip_resized.close()
|
| 303 |
+
|
| 304 |
+
return optimized_path
|
| 305 |
+
except Exception as e:
|
| 306 |
+
st.warning(f"Error in video optimization: {str(e)}. Using original video.")
|
| 307 |
+
return video_path
|
| 308 |
|
| 309 |
def clear_cache(self):
|
| 310 |
"""Clear the video cache"""
|