Commit
·
d4dcccb
1
Parent(s):
8410b32
feat: update model listing
Browse files- src/constants.py +39 -63
- src/models.py +70 -7
src/constants.py
CHANGED
|
@@ -11,7 +11,6 @@ PROMPTS = [(s + f" ({v} output tokens)", v) for (s, v) in PROMPTS]
|
|
| 11 |
MODEL_REPOSITORY_URL = "https://raw.githubusercontent.com/genai-impact/ecologits/refs/heads/main/ecologits/data/models.json"
|
| 12 |
|
| 13 |
main_models_openai = [
|
| 14 |
-
"chatgpt-4o-latest",
|
| 15 |
"gpt-3.5-turbo",
|
| 16 |
"gpt-4",
|
| 17 |
"gpt-4-turbo",
|
|
@@ -19,93 +18,70 @@ main_models_openai = [
|
|
| 19 |
"gpt-4o-mini",
|
| 20 |
"o1",
|
| 21 |
"o1-mini",
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
"
|
| 26 |
-
"
|
| 27 |
-
"
|
| 28 |
-
"
|
| 29 |
-
"
|
| 30 |
-
"meta-llama/Meta-Llama-3-70B",
|
| 31 |
-
"meta-llama/Llama-2-7b",
|
| 32 |
-
"meta-llama/Llama-2-13b",
|
| 33 |
-
"meta-llama/Llama-2-70b",
|
| 34 |
-
"meta-llama/CodeLlama-7b-hf",
|
| 35 |
-
"meta-llama/CodeLlama-13b-hf",
|
| 36 |
-
"meta-llama/CodeLlama-34b-hf",
|
| 37 |
-
"meta-llama/CodeLlama-70b-hf",
|
| 38 |
-
]
|
| 39 |
-
|
| 40 |
-
main_models_msft = [
|
| 41 |
-
"microsoft/phi-1",
|
| 42 |
-
"microsoft/phi-1_5",
|
| 43 |
-
"microsoft/Phi-3-mini-128k-instruct",
|
| 44 |
-
"microsoft/Phi-3-small-128k-instruct",
|
| 45 |
-
"microsoft/Phi-3-medium-128k-instruct",
|
| 46 |
]
|
| 47 |
|
| 48 |
main_models_anthropic = [
|
| 49 |
-
"claude-2.0",
|
| 50 |
-
"claude-2.1",
|
| 51 |
"claude-3-5-haiku-latest",
|
| 52 |
"claude-3-5-sonnet-latest",
|
| 53 |
"claude-3-7-sonnet-latest",
|
| 54 |
-
"claude-
|
| 55 |
-
"claude-
|
| 56 |
-
"claude-
|
|
|
|
| 57 |
]
|
| 58 |
|
| 59 |
main_models_cohere = [
|
| 60 |
-
"
|
| 61 |
-
"c4ai-aya-expanse-32b",
|
| 62 |
-
"command",
|
| 63 |
-
"command-light",
|
| 64 |
"command-r",
|
| 65 |
-
"command-r-
|
|
|
|
|
|
|
| 66 |
]
|
| 67 |
|
| 68 |
main_models_google = [
|
| 69 |
-
"
|
| 70 |
-
"google/gemma-2-9b",
|
| 71 |
-
"google/gemma-2-27b",
|
| 72 |
-
"google/codegemma-2b",
|
| 73 |
-
"google/codegemma-7b",
|
| 74 |
-
"gemini-1.0-pro",
|
| 75 |
-
"gemini-1.5-pro",
|
| 76 |
-
"gemini-1.5-flash",
|
| 77 |
"gemini-2.0-flash",
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
"
|
| 82 |
-
"
|
| 83 |
-
"
|
| 84 |
-
"
|
| 85 |
-
"
|
|
|
|
| 86 |
]
|
| 87 |
|
| 88 |
main_models_mistral = [
|
| 89 |
-
"
|
| 90 |
-
"
|
| 91 |
-
"
|
| 92 |
-
"
|
| 93 |
-
"
|
| 94 |
"ministral-3b-latest",
|
| 95 |
"ministral-8b-latest",
|
| 96 |
-
"mistral-tiny",
|
| 97 |
-
"mistral-small",
|
| 98 |
-
"mistral-medium",
|
| 99 |
"mistral-large-latest",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
]
|
| 101 |
|
| 102 |
MAIN_MODELS = (
|
| 103 |
-
|
| 104 |
-
+ main_models_openai
|
| 105 |
+ main_models_anthropic
|
| 106 |
+ main_models_cohere
|
| 107 |
-
+ main_models_msft
|
| 108 |
+ main_models_mistral
|
| 109 |
-
+ main_models_databricks
|
| 110 |
+ main_models_google
|
| 111 |
)
|
|
|
|
| 11 |
MODEL_REPOSITORY_URL = "https://raw.githubusercontent.com/genai-impact/ecologits/refs/heads/main/ecologits/data/models.json"
|
| 12 |
|
| 13 |
main_models_openai = [
|
|
|
|
| 14 |
"gpt-3.5-turbo",
|
| 15 |
"gpt-4",
|
| 16 |
"gpt-4-turbo",
|
|
|
|
| 18 |
"gpt-4o-mini",
|
| 19 |
"o1",
|
| 20 |
"o1-mini",
|
| 21 |
+
"o3-mini",
|
| 22 |
+
"gpt-4.1-nano",
|
| 23 |
+
"gpt-4.1-mini",
|
| 24 |
+
"gpt-4.1",
|
| 25 |
+
"o4-mini",
|
| 26 |
+
"gpt-5-nano",
|
| 27 |
+
"gpt-5-mini",
|
| 28 |
+
"gpt-5",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
]
|
| 30 |
|
| 31 |
main_models_anthropic = [
|
|
|
|
|
|
|
| 32 |
"claude-3-5-haiku-latest",
|
| 33 |
"claude-3-5-sonnet-latest",
|
| 34 |
"claude-3-7-sonnet-latest",
|
| 35 |
+
"claude-opus-4-0",
|
| 36 |
+
"claude-opus-4-1",
|
| 37 |
+
"claude-sonnet-4-0",
|
| 38 |
+
"claude-sonnet-4-5"
|
| 39 |
]
|
| 40 |
|
| 41 |
main_models_cohere = [
|
| 42 |
+
"command-a-03-2025",
|
|
|
|
|
|
|
|
|
|
| 43 |
"command-r",
|
| 44 |
+
"command-r-08-2024",
|
| 45 |
+
"command-r-plus-08-2024",
|
| 46 |
+
"command-r7b-12-2024"
|
| 47 |
]
|
| 48 |
|
| 49 |
main_models_google = [
|
| 50 |
+
"gemini-2.0-flash-lite",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
"gemini-2.0-flash",
|
| 52 |
+
"gemini-2.5-flash-lite",
|
| 53 |
+
"gemini-2.5-flash",
|
| 54 |
+
"gemini-2.5-pro",
|
| 55 |
+
"gemma-3-1b-it",
|
| 56 |
+
"gemma-3-4b-it",
|
| 57 |
+
"gemma-3-12b-it",
|
| 58 |
+
"gemma-3-27b-it",
|
| 59 |
+
"gemma-3n-e2b-it",
|
| 60 |
+
"gemma-3n-e4b-it"
|
| 61 |
]
|
| 62 |
|
| 63 |
main_models_mistral = [
|
| 64 |
+
"codestral-latest",
|
| 65 |
+
"devstral-medium-latest",
|
| 66 |
+
"devstral-small-latest",
|
| 67 |
+
"magistral-medium-latest",
|
| 68 |
+
"magistral-small-latest",
|
| 69 |
"ministral-3b-latest",
|
| 70 |
"ministral-8b-latest",
|
|
|
|
|
|
|
|
|
|
| 71 |
"mistral-large-latest",
|
| 72 |
+
"mistral-medium-latest",
|
| 73 |
+
"mistral-small-latest",
|
| 74 |
+
"mistral-tiny-latest",
|
| 75 |
+
"open-mistral-7b",
|
| 76 |
+
"open-mistral-nemo",
|
| 77 |
+
"open-mixtral-8x22b",
|
| 78 |
+
"open-mixtral-8x7b"
|
| 79 |
]
|
| 80 |
|
| 81 |
MAIN_MODELS = (
|
| 82 |
+
main_models_openai
|
|
|
|
| 83 |
+ main_models_anthropic
|
| 84 |
+ main_models_cohere
|
|
|
|
| 85 |
+ main_models_mistral
|
|
|
|
| 86 |
+ main_models_google
|
| 87 |
)
|
src/models.py
CHANGED
|
@@ -1,8 +1,13 @@
|
|
| 1 |
-
import requests
|
| 2 |
import json
|
|
|
|
|
|
|
| 3 |
import pandas as pd
|
| 4 |
-
from src.constants import MODEL_REPOSITORY_URL, MAIN_MODELS
|
| 5 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
|
| 8 |
def clean_models_data(df, with_filter=True):
|
|
@@ -70,10 +75,68 @@ def clean_models_data(df, with_filter=True):
|
|
| 70 |
]
|
| 71 |
|
| 72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
@st.cache_data
|
| 74 |
-
def load_models(filter_main=True):
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import json
|
| 2 |
+
|
| 3 |
+
import requests
|
| 4 |
import pandas as pd
|
|
|
|
| 5 |
import streamlit as st
|
| 6 |
+
from ecologits.model_repository import models as model_repository, ArchitectureTypes
|
| 7 |
+
from ecologits.status_messages import ModelArchNotReleasedWarning, ModelArchMultimodalWarning
|
| 8 |
+
from ecologits.utils.range_value import RangeValue
|
| 9 |
+
|
| 10 |
+
from src.constants import MODEL_REPOSITORY_URL, MAIN_MODELS
|
| 11 |
|
| 12 |
|
| 13 |
def clean_models_data(df, with_filter=True):
|
|
|
|
| 75 |
]
|
| 76 |
|
| 77 |
|
| 78 |
+
PROVIDERS_FORMAT = {
|
| 79 |
+
"anthropic": "Anthropic",
|
| 80 |
+
"cohere": "Cohere",
|
| 81 |
+
"google_genai": "Google",
|
| 82 |
+
"mistralai": "Mistral AI",
|
| 83 |
+
"openai": "OpenAI",
|
| 84 |
+
}
|
| 85 |
+
|
| 86 |
+
|
| 87 |
@st.cache_data
|
| 88 |
+
def load_models(filter_main=True) -> pd.DataFrame:
|
| 89 |
+
data = []
|
| 90 |
+
for m in model_repository.list_models():
|
| 91 |
+
if filter_main and m.name not in MAIN_MODELS:
|
| 92 |
+
continue # Ignore "not main" models when filter is enabled
|
| 93 |
+
|
| 94 |
+
if m.architecture.type == ArchitectureTypes.DENSE:
|
| 95 |
+
if isinstance(m.architecture.parameters, RangeValue):
|
| 96 |
+
total_parameters = dict(m.architecture.parameters)
|
| 97 |
+
else:
|
| 98 |
+
total_parameters = m.architecture.parameters
|
| 99 |
+
active_parameters = total_parameters
|
| 100 |
+
|
| 101 |
+
elif m.architecture.type == ArchitectureTypes.MOE:
|
| 102 |
+
if isinstance(m.architecture.parameters.total, RangeValue):
|
| 103 |
+
total_parameters = dict(m.architecture.parameters.total)
|
| 104 |
+
else:
|
| 105 |
+
total_parameters = m.architecture.parameters.total
|
| 106 |
+
|
| 107 |
+
if isinstance(m.architecture.parameters.active, RangeValue):
|
| 108 |
+
active_parameters = dict(m.architecture.parameters.active)
|
| 109 |
+
else:
|
| 110 |
+
active_parameters = m.architecture.parameters.active
|
| 111 |
+
|
| 112 |
+
else:
|
| 113 |
+
continue # Ignore model
|
| 114 |
+
|
| 115 |
+
warning_arch = False
|
| 116 |
+
warning_multi_modal = False
|
| 117 |
+
for w in m.warnings:
|
| 118 |
+
if isinstance(w, ModelArchNotReleasedWarning):
|
| 119 |
+
warning_arch = True
|
| 120 |
+
if isinstance(w, ModelArchMultimodalWarning):
|
| 121 |
+
warning_multi_modal = True
|
| 122 |
+
|
| 123 |
+
data.append({
|
| 124 |
+
"provider": m.provider.value,
|
| 125 |
+
"provider_clean": PROVIDERS_FORMAT.get(m.provider.value, m.provider.value),
|
| 126 |
+
"name": m.name,
|
| 127 |
+
"name_clean": clean_model_name(m.name),
|
| 128 |
+
"architecture_type": m.architecture.type.value,
|
| 129 |
+
"total_parameters": total_parameters,
|
| 130 |
+
"active_parameters": active_parameters,
|
| 131 |
+
"warning_arch": warning_arch,
|
| 132 |
+
"warning_multi_modal": warning_multi_modal,
|
| 133 |
+
})
|
| 134 |
+
|
| 135 |
+
return pd.DataFrame(data)
|
| 136 |
+
|
| 137 |
|
| 138 |
+
def clean_model_name(model_name: str) -> str:
|
| 139 |
+
model_name = model_name.replace("latest", "")
|
| 140 |
+
model_name = model_name.replace("-", " ")
|
| 141 |
+
model_name = model_name.replace("_", " ")
|
| 142 |
+
return model_name
|