Spaces:
Sleeping
Sleeping
| import spaces | |
| import gradio as gr | |
| import numpy as np | |
| import random | |
| import torch | |
| import torch | |
| from micro_diffusion.models.model import create_latent_diffusion | |
| from huggingface_hub import hf_hub_download | |
| from safetensors import safe_open | |
| from PIL import Image | |
| # Init model | |
| params = { | |
| 'latent_res': 64, | |
| 'in_channels': 4, | |
| 'pos_interp_scale': 2.0, | |
| } | |
| model = create_latent_diffusion(**params).to('cuda') | |
| # Download weights from HF | |
| model_dict_path = hf_hub_download(repo_id="giannisdaras/ambient-o", filename="model.safetensors") | |
| model_dict = {} | |
| with safe_open(model_dict_path, framework="pt", device="cpu") as f: | |
| for key in f.keys(): | |
| model_dict[key] = f.get_tensor(key) | |
| # Convert parameters to float32 + load | |
| float_model_params = { | |
| k: v.to(torch.float32) for k, v in model_dict.items() | |
| } | |
| model.dit.load_state_dict(float_model_params) | |
| model = model.eval() | |
| dtype = torch.bfloat16 | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| torch.cuda.empty_cache() | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = 2048 | |
| def infer(prompt, seed=42, randomize_seed=False, guidance_scale=5.0, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)): | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| images = model.generate(prompt=[prompt], num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, seed=seed) | |
| image = images[0] | |
| image = image.detach().cpu() | |
| image = image.permute(1, 2, 0) # [H, W, C] | |
| image = (image * 255).clamp(0, 255).to(torch.uint8).numpy() | |
| image = Image.fromarray(image) | |
| return image, seed | |
| examples = [ | |
| "A dragon swimming in a river", | |
| "A penguin in a wizard hat casting spells", | |
| "A detective cat in a trenchcoat", | |
| "a tiny astronaut hatching from an egg on the moon", | |
| "Close-up of a fire-spitting dragon, cinematic shot." | |
| ] | |
| css=""" | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 520px; | |
| } | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown(f"""# Ambient-o text2image model | |
| [[paper](https://arxiv.org/abs/2506.10038)] | |
| [[blog](https://giannisdaras.github.io/publication/ambient_omni)] [[model](https://huggingface.co/giannisdaras/ambient-o)] [[license](https://github.com/giannisdaras/ambient-omni/blob/main/text-to-image/LICENSE)] | |
| """) | |
| with gr.Row(): | |
| prompt = gr.Text( | |
| label="Prompt", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter your prompt", | |
| container=False, | |
| ) | |
| run_button = gr.Button("Run", scale=0) | |
| result = gr.Image(label="Result", show_label=False) | |
| with gr.Accordion("Advanced Settings", open=False): | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Row(): | |
| guidance_scale = gr.Slider( | |
| label="Guidance Scale", | |
| minimum=1, | |
| maximum=15, | |
| step=0.1, | |
| value=5.0, | |
| ) | |
| num_inference_steps = gr.Slider( | |
| label="Number of inference steps", | |
| minimum=1, | |
| maximum=50, | |
| step=1, | |
| value=28, | |
| ) | |
| gr.Examples( | |
| examples = examples, | |
| fn = infer, | |
| inputs = [prompt], | |
| outputs = [result, seed], | |
| cache_examples="lazy" | |
| ) | |
| gr.on( | |
| triggers=[run_button.click, prompt.submit], | |
| fn = infer, | |
| inputs = [prompt, seed, randomize_seed, guidance_scale, num_inference_steps], | |
| outputs = [result, seed] | |
| ) | |
| demo.launch() |