Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import numpy as np
|
| 3 |
+
import random
|
| 4 |
+
import torch
|
| 5 |
+
import torch
|
| 6 |
+
from micro_diffusion.models.model import create_latent_diffusion
|
| 7 |
+
from huggingface_hub import hf_hub_download
|
| 8 |
+
from safetensors import safe_open
|
| 9 |
+
from PIL import Image
|
| 10 |
+
|
| 11 |
+
# Init model
|
| 12 |
+
params = {
|
| 13 |
+
'latent_res': 64,
|
| 14 |
+
'in_channels': 4,
|
| 15 |
+
'pos_interp_scale': 2.0,
|
| 16 |
+
}
|
| 17 |
+
model = create_latent_diffusion(**params).to('cuda')
|
| 18 |
+
|
| 19 |
+
# Download weights from HF
|
| 20 |
+
model_dict_path = hf_hub_download(repo_id="giannisdaras/ambient-o", filename="model.safetensors")
|
| 21 |
+
model_dict = {}
|
| 22 |
+
with safe_open(model_dict_path, framework="pt", device="cpu") as f:
|
| 23 |
+
for key in f.keys():
|
| 24 |
+
model_dict[key] = f.get_tensor(key)
|
| 25 |
+
|
| 26 |
+
# Convert parameters to float32 + load
|
| 27 |
+
float_model_params = {
|
| 28 |
+
k: v.to(torch.float32) for k, v in model_dict.items()
|
| 29 |
+
}
|
| 30 |
+
model.dit.load_state_dict(float_model_params)
|
| 31 |
+
model = model.eval()
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
dtype = torch.bfloat16
|
| 35 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 36 |
+
|
| 37 |
+
torch.cuda.empty_cache()
|
| 38 |
+
|
| 39 |
+
MAX_SEED = np.iinfo(np.int32).max
|
| 40 |
+
MAX_IMAGE_SIZE = 2048
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def infer(prompt, seed=42, randomize_seed=False, guidance_scale=5.0, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
|
| 44 |
+
if randomize_seed:
|
| 45 |
+
seed = random.randint(0, MAX_SEED)
|
| 46 |
+
images = model.generate(prompt=[prompt], num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, seed=seed)
|
| 47 |
+
image = images[0]
|
| 48 |
+
image = image.detach().cpu()
|
| 49 |
+
image = image.permute(1, 2, 0) # [H, W, C]
|
| 50 |
+
image = (image * 255).clamp(0, 255).to(torch.uint8).numpy()
|
| 51 |
+
image = Image.fromarray(image)
|
| 52 |
+
return image, seed
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
examples = [
|
| 56 |
+
"a tiny astronaut hatching from an egg on the moon",
|
| 57 |
+
"a cat holding a sign that says hello world",
|
| 58 |
+
"an anime illustration of a wiener schnitzel",
|
| 59 |
+
]
|
| 60 |
+
|
| 61 |
+
css="""
|
| 62 |
+
#col-container {
|
| 63 |
+
margin: 0 auto;
|
| 64 |
+
max-width: 520px;
|
| 65 |
+
}
|
| 66 |
+
"""
|
| 67 |
+
|
| 68 |
+
with gr.Blocks(css=css) as demo:
|
| 69 |
+
|
| 70 |
+
with gr.Column(elem_id="col-container"):
|
| 71 |
+
gr.Markdown(f"""# Ambient-o text2image model
|
| 72 |
+
[[paper](https://arxiv.org/abs/2506.10038)]
|
| 73 |
+
[[blog](https://giannisdaras.github.io/publication/ambient_omni)] [[model](https://huggingface.co/giannisdaras/ambient-o)] [[license](https://github.com/giannisdaras/ambient-omni/blob/main/text-to-image/LICENSE)]
|
| 74 |
+
""")
|
| 75 |
+
|
| 76 |
+
with gr.Row():
|
| 77 |
+
|
| 78 |
+
prompt = gr.Text(
|
| 79 |
+
label="Prompt",
|
| 80 |
+
show_label=False,
|
| 81 |
+
max_lines=1,
|
| 82 |
+
placeholder="Enter your prompt",
|
| 83 |
+
container=False,
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
+
run_button = gr.Button("Run", scale=0)
|
| 87 |
+
|
| 88 |
+
result = gr.Image(label="Result", show_label=False)
|
| 89 |
+
|
| 90 |
+
with gr.Accordion("Advanced Settings", open=False):
|
| 91 |
+
|
| 92 |
+
seed = gr.Slider(
|
| 93 |
+
label="Seed",
|
| 94 |
+
minimum=0,
|
| 95 |
+
maximum=MAX_SEED,
|
| 96 |
+
step=1,
|
| 97 |
+
value=0,
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 101 |
+
|
| 102 |
+
with gr.Row():
|
| 103 |
+
|
| 104 |
+
guidance_scale = gr.Slider(
|
| 105 |
+
label="Guidance Scale",
|
| 106 |
+
minimum=1,
|
| 107 |
+
maximum=15,
|
| 108 |
+
step=0.1,
|
| 109 |
+
value=5.0,
|
| 110 |
+
)
|
| 111 |
+
|
| 112 |
+
num_inference_steps = gr.Slider(
|
| 113 |
+
label="Number of inference steps",
|
| 114 |
+
minimum=1,
|
| 115 |
+
maximum=50,
|
| 116 |
+
step=1,
|
| 117 |
+
value=28,
|
| 118 |
+
)
|
| 119 |
+
|
| 120 |
+
gr.Examples(
|
| 121 |
+
examples = examples,
|
| 122 |
+
fn = infer,
|
| 123 |
+
inputs = [prompt],
|
| 124 |
+
outputs = [result, seed],
|
| 125 |
+
cache_examples="lazy"
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
gr.on(
|
| 129 |
+
triggers=[run_button.click, prompt.submit],
|
| 130 |
+
fn = infer,
|
| 131 |
+
inputs = [prompt, seed, randomize_seed, guidance_scale, num_inference_steps],
|
| 132 |
+
outputs = [result, seed]
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
demo.launch()
|