import gradio as gr import numpy as np import random import torch import torch from micro_diffusion.models.model import create_latent_diffusion from huggingface_hub import hf_hub_download from safetensors import safe_open from PIL import Image # Init model params = { 'latent_res': 64, 'in_channels': 4, 'pos_interp_scale': 2.0, } model = create_latent_diffusion(**params).to('cuda') # Download weights from HF model_dict_path = hf_hub_download(repo_id="giannisdaras/ambient-o", filename="model.safetensors") model_dict = {} with safe_open(model_dict_path, framework="pt", device="cpu") as f: for key in f.keys(): model_dict[key] = f.get_tensor(key) # Convert parameters to float32 + load float_model_params = { k: v.to(torch.float32) for k, v in model_dict.items() } model.dit.load_state_dict(float_model_params) model = model.eval() dtype = torch.bfloat16 device = "cuda" if torch.cuda.is_available() else "cpu" torch.cuda.empty_cache() MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 2048 def infer(prompt, seed=42, randomize_seed=False, guidance_scale=5.0, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)): if randomize_seed: seed = random.randint(0, MAX_SEED) images = model.generate(prompt=[prompt], num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, seed=seed) image = images[0] image = image.detach().cpu() image = image.permute(1, 2, 0) # [H, W, C] image = (image * 255).clamp(0, 255).to(torch.uint8).numpy() image = Image.fromarray(image) return image, seed examples = [ "a tiny astronaut hatching from an egg on the moon", "a cat holding a sign that says hello world", "an anime illustration of a wiener schnitzel", ] css=""" #col-container { margin: 0 auto; max-width: 520px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f"""# Ambient-o text2image model [[paper](https://arxiv.org/abs/2506.10038)] [[blog](https://giannisdaras.github.io/publication/ambient_omni)] [[model](https://huggingface.co/giannisdaras/ambient-o)] [[license](https://github.com/giannisdaras/ambient-omni/blob/main/text-to-image/LICENSE)] """) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): guidance_scale = gr.Slider( label="Guidance Scale", minimum=1, maximum=15, step=0.1, value=5.0, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=28, ) gr.Examples( examples = examples, fn = infer, inputs = [prompt], outputs = [result, seed], cache_examples="lazy" ) gr.on( triggers=[run_button.click, prompt.submit], fn = infer, inputs = [prompt, seed, randomize_seed, guidance_scale, num_inference_steps], outputs = [result, seed] ) demo.launch()