DefactDetection / app.py
gmustafa413's picture
Update app.py
cafa0e6 verified
from pathlib import Path
import numpy as np
import os, shutil
import matplotlib.pyplot as plt
from PIL import Image
from tqdm.auto import tqdm
import torch
import torchvision
from torch.utils.data import DataLoader
from torchvision.datasets import ImageFolder
from torchvision.transforms import transforms
import torch.optim as optim
from torchvision.models import resnet50, ResNet50_Weights
transform = transforms.Compose([
transforms.Resize((224,224)),
transforms.ToTensor()
])
import urllib.request
urllib.request.urlretrieve("https://www.mydrive.ch/shares/38536/3830184030e49fe74747669442f0f282/download/420937484-1629951672/carpet.tar.xz",
"carpet.tar.xz")
import tarfile
with tarfile.open('carpet.tar.xz') as f:
f.extractall('.')
class resnet_feature_extractor(torch.nn.Module):
def __init__(self):
"""This class extracts the feature maps from a pretrained Resnet model."""
super(resnet_feature_extractor, self).__init__()
self.model = resnet50(weights=ResNet50_Weights.DEFAULT)
self.model.eval()
for param in self.model.parameters():
param.requires_grad = False
# Hook to extract feature maps
def hook(module, input, output) -> None:
"""This hook saves the extracted feature map on self.featured."""
self.features.append(output)
self.model.layer2[-1].register_forward_hook(hook)
self.model.layer3[-1].register_forward_hook(hook)
def forward(self, input):
self.features = []
with torch.no_grad():
_ = self.model(input)
self.avg = torch.nn.AvgPool2d(3, stride=1)
fmap_size = self.features[0].shape[-2] # Feature map sizes h, w
self.resize = torch.nn.AdaptiveAvgPool2d(fmap_size)
resized_maps = [self.resize(self.avg(fmap)) for fmap in self.features]
patch = torch.cat(resized_maps, 1) # Merge the resized feature maps
patch = patch.reshape(patch.shape[1], -1).T # Craete a column tensor
return patch
image = Image.open(r'carpet/test/color/000.png')
image = transform(image).unsqueeze(0)
backbone = resnet_feature_extractor()
feature = backbone(image)
# print(backbone.features[0].shape)
# print(backbone.features[1].shape)
print(feature.shape)
# plt.imshow(image[0].permute(1,2,0))
memory_bank =[]
folder_path = Path(r'carpet/train/good')
for pth in tqdm(folder_path.iterdir(),leave=False):
with torch.no_grad():
data = transform(Image.open(pth)).unsqueeze(0)
features = backbone(data)
memory_bank.append(features.cpu().detach())
memory_bank = torch.cat(memory_bank,dim=0)
y_score=[]
folder_path = Path(r'carpet/train/good')
for pth in tqdm(folder_path.iterdir(),leave=False):
data = transform(Image.open(pth)).unsqueeze(0)
with torch.no_grad():
features = backbone(data)
distances = torch.cdist(features, memory_bank, p=2.0)
dist_score, dist_score_idxs = torch.min(distances, dim=1)
s_star = torch.max(dist_score)
segm_map = dist_score.view(1, 1, 28, 28)
y_score.append(s_star.cpu().numpy())
best_threshold = np.mean(y_score) + 2 * np.std(y_score)
plt.hist(y_score,bins=50)
plt.vlines(x=best_threshold,ymin=0,ymax=30,color='r')
plt.show()
y_score = []
y_true=[]
for classes in ['color','good','cut','hole','metal_contamination','thread']:
folder_path = Path(r'carpet/test/{}'.format(classes))
for pth in tqdm(folder_path.iterdir(),leave=False):
class_label = pth.parts[-2]
with torch.no_grad():
test_image = transform(Image.open(pth)).unsqueeze(0)
features = backbone(test_image)
distances = torch.cdist(features, memory_bank, p=2.0)
dist_score, dist_score_idxs = torch.min(distances, dim=1)
s_star = torch.max(dist_score)
segm_map = dist_score.view(1, 1, 28, 28)
y_score.append(s_star.cpu().numpy())
y_true.append(0 if class_label == 'good' else 1)
# plotting the y_score values which do not belong to 'good' class
y_score_nok = [score for score,true in zip(y_score,y_true) if true==1]
plt.hist(y_score_nok,bins=50)
plt.vlines(x=best_threshold,ymin=0,ymax=30,color='r')
plt.show()
test_image = transform(Image.open(r'carpet/test/color/000.png')).unsqueeze(0)
features = backbone(test_image)
distances = torch.cdist(features, memory_bank, p=2.0)
dist_score, dist_score_idxs = torch.min(distances, dim=1)
s_star = torch.max(dist_score)
segm_map = dist_score.view(1, 1, 28, 28)
segm_map = torch.nn.functional.interpolate( # Upscale by bi-linaer interpolation to match the original input resolution
segm_map,
size=(224, 224),
mode='bilinear'
)
plt.imshow(segm_map.cpu().squeeze(), cmap='jet')
from sklearn.metrics import roc_auc_score, roc_curve, confusion_matrix, ConfusionMatrixDisplay, f1_score
# Calculate AUC-ROC score
auc_roc_score = roc_auc_score(y_true, y_score)
print("AUC-ROC Score:", auc_roc_score)
# Plot ROC curve
fpr, tpr, thresholds = roc_curve(y_true, y_score)
plt.figure()
plt.plot(fpr, tpr, color='darkorange', lw=2, label='ROC curve (area = %0.2f)' % auc_roc_score)
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic (ROC) Curve')
plt.legend(loc="lower right")
plt.show()
f1_scores = [f1_score(y_true, y_score >= threshold) for threshold in thresholds]
# Select the best threshold based on F1 score
best_threshold = thresholds[np.argmax(f1_scores)]
print(f'best_threshold = {best_threshold}')
# Generate confusion matrix
cm = confusion_matrix(y_true, (y_score >= best_threshold).astype(int))
disp = ConfusionMatrixDisplay(confusion_matrix=cm,display_labels=['OK','NOK'])
disp.plot()
plt.show()
backbone.eval()
import gradio as gr
import torch
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
import io
# -----------------
def detect_fault(uploaded_image):
# Convert uploaded image
test_image = transform(uploaded_image).unsqueeze(0)
with torch.no_grad():
features = backbone(test_image)
distances = torch.cdist(features, memory_bank, p=2.0)
dist_score, dist_score_idxs = torch.min(distances, dim=1)
s_star = torch.max(dist_score)
segm_map = dist_score.view(1, 1, 28, 28)
segm_map = torch.nn.functional.interpolate(
segm_map,
size=(224, 224),
mode='bilinear'
).cpu().squeeze().numpy()
y_score_image = s_star.cpu().numpy()
y_pred_image = 1*(y_score_image >= best_threshold)
class_label = ['Image Is OK','Image is Not OK']
# --- Plot results ---
fig, axs = plt.subplots(1, 3, figsize=(15, 5))
# Original image
axs[0].imshow(test_image.squeeze().permute(1,2,0).cpu().numpy())
axs[0].set_title("Original Image")
axs[0].axis("off")
# Heatmap
axs[1].imshow(segm_map, cmap='jet')
axs[1].set_title(f"Anomaly Score: {y_score_image / best_threshold:0.4f}\nPrediction: {class_label[y_pred_image]}")
axs[1].axis("off")
# Segmentation map
axs[2].imshow((segm_map > best_threshold*1.25), cmap='gray')
axs[2].set_title("Fault Segmentation Map")
axs[2].axis("off")
# Save plot to image
buf = io.BytesIO()
plt.savefig(buf, format="png")
buf.seek(0)
result_image = Image.open(buf)
plt.close(fig)
return result_image
# Gradio UI
demo = gr.Interface(
fn=detect_fault,
inputs=gr.Image(type="pil", label="Upload Image"),
outputs=gr.Image(type="pil", label="Detection Result"),
title="Fault Detection in Images",
description="Upload an image and the model will detect if there are any faults and show the segmentation map."
)
if __name__ == "__main__":
demo.launch()