Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| from transformers import AutoProcessor, AutoModelForCausalLM | |
| import spaces | |
| from PIL import Image | |
| import subprocess | |
| subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
| models = { | |
| 'gokaygokay/Florence-2-Flux-Large': AutoModelForCausalLM.from_pretrained('gokaygokay/Florence-2-Flux-Large', trust_remote_code=True).eval(), | |
| 'gokaygokay/Florence-2-Flux': AutoModelForCausalLM.from_pretrained('gokaygokay/Florence-2-Flux', trust_remote_code=True).eval(), | |
| } | |
| processors = { | |
| 'gokaygokay/Florence-2-Flux-Large': AutoProcessor.from_pretrained('gokaygokay/Florence-2-Flux-Large', trust_remote_code=True), | |
| 'gokaygokay/Florence-2-Flux': AutoProcessor.from_pretrained('gokaygokay/Florence-2-Flux', trust_remote_code=True), | |
| } | |
| title = """<h1 align="center">Florence-2 Captioner for Flux Prompts</h1> | |
| <p><center> | |
| <a href="https://huggingface.co/gokaygokay/Florence-2-Flux-Large" target="_blank">[Florence-2 Flux Large]</a> | |
| <a href="https://huggingface.co/gokaygokay/Florence-2-Flux" target="_blank">[Florence-2 Flux Base]</a> | |
| </center></p> | |
| """ | |
| def run_example(image, model_name='gokaygokay/Florence-2-Flux-Large'): | |
| image = Image.fromarray(image) | |
| task_prompt = "<DESCRIPTION>" | |
| prompt = task_prompt + "Describe this image in great detail." | |
| if image.mode != "RGB": | |
| image = image.convert("RGB") | |
| model = models[model_name] | |
| processor = processors[model_name] | |
| inputs = processor(text=prompt, images=image, return_tensors="pt") | |
| generated_ids = model.generate( | |
| input_ids=inputs["input_ids"], | |
| pixel_values=inputs["pixel_values"], | |
| max_new_tokens=1024, | |
| num_beams=3, | |
| repetition_penalty=1.10, | |
| ) | |
| generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0] | |
| parsed_answer = processor.post_process_generation(generated_text, task=task_prompt, image_size=(image.width, image.height)) | |
| return parsed_answer["<DESCRIPTION>"] | |
| with gr.Blocks(theme='bethecloud/storj_theme') as demo: | |
| gr.HTML(title) | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_img = gr.Image(label="Input Picture") | |
| model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value='gokaygokay/Florence-2-Flux-Large') | |
| submit_btn = gr.Button(value="Submit") | |
| with gr.Column(): | |
| output_text = gr.Textbox(label="Output Text") | |
| gr.Examples( | |
| [["image1.jpg"], | |
| ["image2.jpg"], | |
| ["image3.png"], | |
| ["image5.jpg"]], | |
| inputs=[input_img, model_selector], | |
| outputs=[output_text], | |
| fn=run_example, | |
| label='Try captioning on below examples', | |
| cache_examples=True | |
| ) | |
| submit_btn.click(run_example, [input_img, model_selector], [output_text]) | |
| demo.launch(debug=True) |